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A B S T R A C T

An Object Summary (OS) is a tree structure of tuples that summarizes the context of a particular
Data Subject (DS) tuple. The OS has been used as a model of keyword search in relational
databases; where given a set of keywords, the objective is to identify the DSs tuples relevant to
the keywords and their corresponding OSs. However, a query result may return a large amount
of OSs, which brings in the issue of effectively and efficiently ranking them in order to present
only the most important ones to the user.

In this paper, we propose a model that ranks OSs containing a set of identifying keywords
(e.g., Chen) according to their relevance to a set of thematic keywords (e.g. Mining). We argue
that the effective thematic ranking of OSs should combine gracefully IR-style properties,
authoritative ranking and affinity. Our ranking problem is modeled and solved as a top-k
group-by join; we propose an algorithm that computes the join efficiently, taking advantage of
appropriate count statistics and compare it with baseline approaches. An experimental
evaluation on the DBLP and TPC-H databases verifies the effectiveness and efficiency of our
proposal.

1. Introduction

The keyword search paradigm in relational databases (R-KwS) [1,2] extracts trees of tuples that collectively contain a set of
keywords and they are connected through foreign-key links. For example, the query {“Chen”, “Agrawal”} on the DBLP database will
return the papers co-authored by authors Chen and Agrawal. On the other hand, the R-KwS paradigm may not be very effective
when trying to extract information about a particular data subject (DS),1 e.g. for author Chen, as the result will include only single
tuples containing the keyword, (i.e., author tuples of Chens). To address this issue, in [3–5], the concept of Object Summary (OS) is
introduced. An OS summarizes all data held in a database about a particular DS. More precisely, an OS is a tree with the tuple tDS

containing the keyword(s) (e.g. Author tuple Ming-Syan Chen) as the root node and its neighboring tuples, containing additional
information (e.g. his papers, co-authors etc.), as child and descendant nodes. Fig. 1 illustrates part of the OS for Ming-Syan Chen.

OSs can be very useful for users searching for comprehensive information about DSs related to a set of keywords. On the other
hand, a query may be related to numerous DSs; thus computing and showing all the corresponding OSs could overwhelm the user.
For example, the query “Chen” on the DBLP database would return around 1,982 OSs, as there are that many authors having “Chen”
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as a component of their names. These OSs can be ranked according to their importance, which is calculated by aggregating scores of
the OS contents (i.e., tuples) based on authoritative ranking and affinity [5]. Authoritative ranking facilitates the ranking of tuples
by considering the flow of authority via their semantic connections. Affinity measures the closeness of two tuples by considering their
distance, connectivity, etc. However, such a ranking is very static; e.g., Peter Chen will always be ranked first because of his many
citations. This is ineffective for users who search for a DS that does not have the best importance scores. In view of this, in this paper,
we propose the thematic ranking of OSs, where thematic keywords are also input by the user. Specifically, the user inputs (1) a set of
identifying keywords (e.g. {“Chen”}) and (2) a set of thematic keywords (e.g. {“mining”}). In our example, while Ming-Syan Chen
fails to compete Peter Chen when only using the identifying keyword “Chen”, the use of the additional thematic keyword “mining”
makes Ming-Syan Chen prevail, because his OS contains many times the thematic word.

There is already a plethora of relevant research in R-KwS ranking. Existing ranking approaches primarily consider the size (in
tuples) of the results as well as the IR-style metrics, e.g. [6]. However, the straightforward adaptation of these paradigms (as we
explain in detail in Section 2) is inappropriate for the effective ranking of OSs. For instance, a R-KwS result with a small size in tuples
has a higher ranking score; in contrast, an author OS with many papers should have a higher importance than another author with
very few papers. Also, existing work in R-KwS ranking is limited to the consideration of IR approaches which disregards
authoritative flow through relationships and affinity. We argue that the importance and affinity of tuples should be combined with IR
techniques.

In this paper, we consider an OS as a virtual document. Given an identifying and a thematic keyword, we propose that the
thematic ranking of an OS should gracefully combine (1) the importance of the data subject of the OS, (2) IR properties, importance
and affinity of the thematic tuples in the OS (i.e. the tuples containing the thematic keywords). Namely, the high importance of the
DS in combination with the frequent occurrences of thematic tuples (which have high importance and affinity) in an OS should result
to a high thematic score. Note that IR properties also consider (among other metrics) the amount of words per OS and the respective
average of all OSs. Considering the query 〈{“Chen”}, {“Mining”}〉 (Fig. 1), an important Chen OS with many citations who has
authored many well cited papers including the thematic word should get a high score. Comparatively, the thematic keyword found in
non-cited papers will result to a smaller thematic score. Also, affinity influences accordingly the thematic score; for instance,
consider the affinity of a keyword which is found in the title of a paper authored by Chen in comparison to a keyword found in a
paper that Chen cites in one of his papers.

Motivation: OSs can have many applications. For instance, the OS results are in more analogy than the R-KwS paradigms’
results to the web keyword search results (e.g. Google). For instance, the example of Fig. 1 resembles a web page (as both include
comprehensive information about the DS). Therefore, for non-technical users with experience only on web search engines, the OS
paradigm will be closer to their expectations. In general, an OS is a concise summary of the context around any pivot database tuple
or graph node, finding application in (interactive) data exploration, schema extraction, etc. Furthermore, the thematic ranking
(regardless of OSs) finds additional applications; given any graph (e.g., bibliographic, social network, semantic knowledge [7,8],
linked data [9], etc.), we can rank nodes according to their importance in combination with the relevance of the data around them to
thematic keywords. For example, consider a data-graph with authors; we can rank authors based on the theme of their papers or
books (e.g. an author who has written all his 10 books in databases is thematically more important than another author authored 9
books in AI and 1 in databases).

Challenges and approach: The combined formula that we propose is non-monotonic with respect to the scores of the
constituent OSs tuples. In addition, it dictates the implementation of an expensive top-k Group By join (denoted as kGBJ): the join
paths between each DS tuple and all the thematic tuples that link to it have to be grouped before the score of the DS (and the
corresponding OS) can be computed. As a first attempt to tackle our problem, we propose to pre-compute wherever possible the
proposed formula's parameters. During online processing, we need to aggregate the joins of the thematic tuples (i.e. the tuples
containing the thematic keywords q2, denoted as R q( )j

Th
2 ) per DS, i.e. for each tuple containing the identifying keywords q1, denoted as

Fig. 1. A fraction of the Ming-Syan Chen OS (dl OS( ) = 6, 376, tf OS( ) = 294Mining , [Af t( ), Im t( )]).
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R q( )i
DS

1 . We also denote as Rj
Th and Ri

DS the respective relations that R q( )j
Th

2 and R q( )i i
DS belong to; for simplicity, we drop the

subscripts when the context is clear, i.e. RTh, RDS, R q( )Th
2 and R q( )DS

i respectively. Namely, the kGBJ of R q( )i
DS

1 with R q( )j
Th

2 operator.
As we explain in more detail in Section 2.2, the kGBJ problem differentiates technically from existing top-k R-KwS ranking
algorithms which consider top-k ranking of joins of tuples containing the keywords. The efficient calculation of kGBJ can be very
challenging as R q( )i

DS
1 , R q( )j

Th
2 , OS| | (the size of an OS in tuples) sizes can be very large and also the join path can also be long (in

comparison to similar problems studied in earlier work e.g. [6,10,11]). For instance, R (Chen) = 1, 982Author
DS , R (mining) = 2, 961Paper

Th ,
Ming-Syan Chen OS| | = 941 and a join path can be as long as Author→ Paper← ConfYear← Year. Hence, a typical query may require
the join of tens of thousands of tuples. We investigate for the first time these challenging problems in the context of relational
keyword search of large initial inputs (especially on long join paths).

Contributions: In summary the contributions of this paper are as follows:

• The effective thematic ranking of OSs. A formula that gracefully combines IR, affinity and authoritative importance of tuples
containing themes is proposed.

• Baseline and optimized algorithms that address the top-k thematic ranking of OSs. Our formula requires a kGBJ operator, the
efficient evaluation of which has not been studied before, to the best of our knowledge. We propose an efficient top-k bidirectional
algorithm for this problem, which can also be used for answering general kGBJ queries in relational databases.

• An experimental evaluation which verifies the effectiveness of the proposed ranking paradigm and the efficiency of the proposed
algorithm.

Roadmap: The rest of the paper is structured as follows. Section 2 describes background and related work. Section 3 introduces
the semantics of the thematic ranking and the respective formulas. Section 4 presents preprocessing techniques, whereas Section 5
proposes methods for thematic ranking. Section 6 studies the thematic ranking of OSs, in the case where the thematic keywords are
included in multiple relations. Section 7 presents a thorough investigation of the effectiveness of thematic OS ranking and the
efficiency of the proposed algorithms. Finally, Section 8 provides concluding remarks.

2. Background and related work

In this section, we first describe the concept of object summaries (OSs), which we build upon in this paper. We then present and
compare related work in R-KwS and top-k ranking. To the best of our knowledge there is no previous work that focuses on the
thematic ranking of OSs.

2.1. Object summaries

In the context of OS search in relational databases [5], a query is a set of keywords (e.g. {“Chen”}) and the result is a set of OSs.
An OS is generated for each tuple t( )DS found in the database that contains the keyword(s) as part of an attribute's value (e.g. tuple
Chen of relation Author in the DBLP database). tDS is called the data subject (DS) tuple and stores the main semantics of the OS. An
OS is a tree structure composed of tuples, having tDS as root and tDS's neighboring tuples (i.e., those associated through cascading
foreign key links) as its children/descendants. The rationale is that there are relations, denoted as RDS (where t R∈DS DS; e.g. the
Author relation), which hold information about the queried DSs and the relations linked around RDS contain additional information
about each of the DSs. For each RDS, a Data Subject Schema Graph G( )DS can be generated; this is a directed labeled tree that
captures a subset of the database schema with RDS as a root. For example, given the DBLP schema as shown in Fig. 3, Fig. 2
illustrates the GDS of relation Author. In simple words, GDS is a “treelization” of the schema, where RDS becomes the root, its
neighboring relations become child nodes and relations involved in loops or many-to-many relationships are replicated. For
example, relations PaperCitedBy, PaperCites and Co-Author on Author GDS are replicas of Paper and Author relations. In order to

Fig. 2. DBLP Author GDS (Affinity).
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constrain the size of GDS (which could be infinite due to the existence of loops), an affinity measure Af R( )i on each relation Ri to RDS

is defined and used. In simple words, the affinity of Ri to RDS is large if there are few and short paths from Ri to RDS inGDS (see [5] for
a precise definition). Finally, GDS is restricted to contain only Ri's whose affinity to RDS exceeds a certain threshold θ. By traversing
the resulting GDS (i.e., by joining the relations in the paths of GDS), we can generate the OSs. For instance, for the keyword query
“Chen”, the Author GDS of Fig. 2, and θ = 0.7 the OS presented in Fig. 1 will be generated.

In [5] the static ranking of OSs was investigated by considering only the identifying keywords. More precisely, the proposed
ranking formula considers the importance of the constituent tuples and OS size. As already mentioned, such a ranking is not
effective in finding a specific OS with a relatively low importance of a specific theme. Finally, the retrieval of concise and informative
OSs (denoted as size-l OSs) was investigated in [12] while the diverse and proportional size-l OS retrieval was investigated in
[13,14]. In these works, the local importance score of tuples (Eq. (5)) was used in order to decide which tuples are the most
important to include in size-l OSs. Although, in this work we reuse this ranking measure for tuples, the problem definitions are
orthogonal directions to the objective of our present work.

2.2. Keyword search in databases (R-KwS)

R-KwS techniques [1,2] discover a sets of tuples, which are collectively relevant to a set of keywords and they are connected via
foreign key links. For instance, the R-KwS query {“Chen”, “VLDB”} finds all papers authored by Chen that are published at VLDB, or
cited or citing papers at VLDB etc. For this purpose the concept of candidate network (CN) is introduced to model a part of the
schema graph connecting relations containing the keywords. For example, if R (Chen)Paper and R (VLDB)Conference are tuple sets in
relations RPaper and RConference containing keywords “Chen” and “VLDB”, respectively, then a CN could be the
CN R= (Chen)1

Author –RPaper– RConfYear–R (VLDB)Conference . Evidently, the R-KwS paradigm differs from OS search semantically, since
it focuses on the ranking of CNs that connect the given keywords, whereas OSs are trees centered around the data subject described
by the keywords. R-KwS techniques also have technical differences with our present problem (i.e., thematic ranking of OSs), as we
discuss in the next paragraph.

Technical differences with R-KwS top-k ranking: Top-k R-KwS (e.g. [1,2]) considers mainly IR-style techniques to rank R-
KwS results, e.g., TF-IDF scores of the contained keywords in tuples (we shall discuss such IR scoring parameters in our ranking
model in detail in Section 3). The objective is to avoid computing CNs at their entirety; the computation of networks of tuples that
have low scores (calculated as a function of the IR scores of the tuples that contain the keywords and the distance between them) is
avoided as much as possible. The proposed top-k algorithms process the tuples that contain the keywords in descending order of
their initial atomic IR scores; they start producing results and concurrently calculate an upper bound score for the tuple networks
not computed yet, until the top-k results can be safely reported. For instance consider CN1; we need to examine whether tuples from
R (Chen)Paper and R (VLDB)Conference join together and at the same time avoid join results of collectively low IR score. The main
difference between our work and these algorithms is that, in order to rank the OSs, we first have to group all join results that have the
same data subject together and then rank the groups (thus, a top-k Group By rank join denoted as kGBJ). In other words, all join
paths that contain a given data subject tuple t R∈DS DS on the one end and a thematic keyword on the other are grouped together and
their scores are aggregated before we can rank the tDS's to derive the final result. Moreover, we consider additional factors in the
ranking, such as affinity, the size of the OS corresponding to tDS, etc.

Other related work in R-KwS: Early work in keyword search [15] considers proximity-based ranking, in a similar manner as
our thematic ranking of OSs. Proximity-based search is defined by two sets of keywords: A Find query specifies a set of objects (Find)
that are of potential interest and a Near query specifies a Near set. The objective is to rank objects in Find according to their distance
to objects in Near. For instance, query “find papers near {“Chen”, “Agrawal”}” will return tuples in Paper ranked based on their
proximity to keywords “Chen” and “Agrawal”. Thus, a co-authored paper which has distance one from both keywords in Near will be
ranked higher than a paper not written by Chen and/or Agrawal but cited by some of their papers. Evidently, this search paradigm
differs semantically and technically from our work, because ranking is not based on aggregation and/or IR scores (and also their
results are different).

Précis queries [16,17] resemble size-l OSs [5,12] as they append additional information to the result of a R-KwS (i.e., the nodes
containing the keywords), by considering neighboring relations that are implicitly related to the keywords. Since R-KwS itself is
unrelated to thematic ranking of OSs, Précis queries are also not related to our present work. Other related work includes top-k-size
keyword search on tree structured data, e.g. [18,19], combination of user and databases perspectives [20], etc.

2.3. Top-k ranking

Early work on top-k ranking [21–23] addressed the merging of ordered lists using monotonic aggregate functions. All these
approaches focus on ranking of objects based on their various attribute values. The more general problem of ranking the results of a
join was studied in [24]. Our problem involves grouping and aggregating join results before ranking them. Related work on ranking
results of group-by queries is studied in [25], where a group is formed for every distinct pair of tuples from two relations. For

Fig. 3. The DBLP database schema.
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instance, consider two relations R1 and R2 containingm and n distinct tuples and assume that each tuple in R1 can join with any tuple
in R2; then m n× groups will be generated. Our problem is different, because we group the scores of thematic tuples w.r.t. tuples in
the data subject relation only. In general, previous work assumes that (i) both groups and their aggregated data reside in the same
relation and/or (ii) the data to be aggregated are directly associated with their groups (i.e., they include the group ID as an attribute)
and thus can easily be grouped. Because of these assumptions, it is very easy to calculate the cardinality of each group and use it to
accelerate search, while in our case we may have to evaluate expensive joins for this purpose.

3. Thematic ranking of OSs

In this section, we introduce our proposed thematic OS ranking paradigm. A query Q comprises two sets of keywords, namely
Q q q= 〈 , 〉1 2 , where (i) q1 is a set of identifying keywords used to generate OSs as defined in [4] and (ii) q2 is a set of thematic keywords
facilitating a biased ranking of the OSs of data subjects related to q1. For instance, for Q = 〈{“Chen”}, {“mining”}〉, the result in the

DBLP database will be a set of OSs, each centered at a Chen tDS (i.e., data subject tuple), ranked according to the importance of the
tDS (i.e., authors whose name contains “Chen”) and the occurrences of “mining” in the OS. This way, the OS of a less important DS
could be ranked high if it is very relevant to the thematic keywords.

For the thematic ranking of OSs, we treat each OS as a virtual document with the respective relational semantics. We observe
that the following criteria can be used:

(1) The global Importance of constituent tuples and especially tDS. We measure global Importance using authority flow
techniques. More precisely, we use ObjectRank [26] and ValueRank [4] (other methods can also be investigated). For instance,
ObjectRank [26] is an extension of PageRank on databases and introduces the concept of Authority Transfer Rates between the
tuples of each relation. This is based on the observation that solely mapping a relational database to a graph (as in the case of the web
PageRank) is not accurate and Authority Transfer Rates are required to control the flow of authority in neighboring tuples. Namely,
using transfer rates we can favour accordingly authority transfer. For instance, an author will get higher ranking because his papers
are well cited by other papers and not because his papers cite other papers.

For example, Peter Chen is more important than David Chen because he has received more citations; thus, the Peter Chen tDS

should be given higher ranking. Similarly, if the tuples of the OS containing the thematic keywords have higher global importance
(e.g., an important paper on data mining with many citations), the OS should be given higher score.

(2) The IR-properties of the thematic keywords in OSs. The frequency of the appearance of the thematic keywords in the tuples
of the OSs can be very useful in the biased ranking of OSs. Using TF-IDF semantics, these frequencies should be normalized to favor
cases of more rare keywords appearing in tuples.

(3) The Affinity of the tuples containing the thematic keywords to the tDS (recall, that as explained in Section 2.1 [5], for each
relation of aGDS an affinity score is calculated). For instance, if the keywords are found within one hop from tDS, they should certainly
have higher impact in the ranking of the OS, than if found in tuples far from tDS. For instance, the keyword “mining” found in an
author's paper should have higher weight than a keyword found in a paper cited by a paper of the author. As shown in [5], affinity is a
more accurate measure compared to distance (which is used by other ranking paradigms in relational databases).

Based on the above ranking criteria the thematic ranking score of an OS (which contains q1 in its DS tuple tDS) can be calculated
using the following two constituent factors:

score q Im t( , ) = ( ),1 1
DS

(1)

score q
s t q

α α dl
avdl OS

( , ) =
∑ ( , )

1 − + · ( )
( )

,t
2 2

∈ 2

(2)

where

∑s t q tf t idf li t( , ) = (1 + ln(1 + ln( ( ))))·ln( )· ( ),
w t q

w w2
∈ ∩ 2 (3)

idf
N
df OS

=
+ 1

( )
,w

OS

w (4)

li t Af t Im t( ) = ( )· ( ). (5)

The first factor score q( , )1 1 captures the importance of tDS itself, while the second factor score q( , )2 2 captures the relevance of
the OS to the keywords in q2 (i.e., the importance and affinity of the tuples in containing these keywords). score q( , )1 1 is simply

defined by Im t( )DS , which is the global importance of tuple tDS in the database, according to authority measures such as ObjectRank
[26] and ValueRank [4]. To define score q( , )2 2 , we consider each tuple t ∈ that includes at least one keyword from q2. Note that
the same tuple t in a relation Ri can appear multiple times in an OS (e.g., the same author can appear as a co-author in many papers
in the same OS tree). Thus, score OS q( , )2 2 considers such tuple instances as distinct (i.e., different) tuples in the OS. For these tuples,
we compute a s t q( , )2 by aggregating for each q2-keywordw in t (i) the normalized TF-IDF score ofw in t and (ii) the local importance
of t in the OS (i.e., the affinity-weighted global importance of t). Specifically, tf t( )w is the term frequency of w in t, li t( ) is the local
importance of t in the context of an OS, Af t( ) is the affinity of the relation that t belongs to, and Im t( ) is the global Importance of t. idfw
is the inverse document frequency of w in the database, defined by dividing the total number of OSs NOS by the number of OSs
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df OS( )w containing the term w. In Eq. (2), each s t q( , )2 is normalized to consider the ratio between the size in words of the OS, dl( ),
and the average size of all OSs, avdl OS( ), in order not to favor large OSs; α is a tuning parameter (default to 0.5 as in [10]) used in this
normalization. Observe that score q( , )2 2 will be 0 if does not include any thematic tuples (since all tuples in the given OS will have
s t q( , ) = 02 ). Note that score2 is a natural adaptation from previous work [10] that considers IR scores in ranking R-KwS results; li t( )
(i.e. Af t Im t( )* ( )) has also been used in previous work [12] following the same reasoning that faraway tuples in an OS should be
penalized when selecting a size-l OS synopsis.

The Combined Formula: Finally, the two scoring factors are combined as a product (i.e., in accordance to earlier work
[10,11]) as to derive overall score of each OS (relevant to q1), with respect to the thematic keywords q2:

score Q score q score q( , ) = ( , )· ( , )1 1 2 2 (6)

4. Preprocessing

Given a queryQ q q= 〈 , 〉1 2 , our goal is to rank the OSs that have as data subject a tuple tDS that contains q1, based on their scores as
defined by Eq. (6), and return the top-k OSs with the highest scores. During search, our goal is to avoid computations as far as
possible. Since the data are mostly static, we invest in pre-computations in order to reduce the search cost. In the following we
describe the pre-computation techniques that we apply and the information that we save from them, which is then used during
search.

OS-independent factors: There are several factors in the scoring formula which are independent of the respective OS and the
query keywords, but they are only related to the database tuples. These factors can be easily and cheaply indexed and obtained from
the database (same indexing was also used in [12]). Specifically, the global importance Im t( ) for each tuple t is pre-computed and
stored based on the underlying applications. Similarly, Af t( ) can easily be obtained after having preprocessed the affinity of the
relation in GDS where t belongs to. For example, in the GDS shown in Fig. 2, the affinities of all relations have been preprocessed. NOS
can be easily calculated by the cardinality of RDS (e.g., R| |Author for the Author OSs).

OS-dependent factors: Each relation of the database can play the role of RDS, i.e., the relation from which the data subjects are
obtained. As discussed above, for each candidate RDS, we can generate the correspondingGDS and compute the affinities between RDS

and all other relations in its GDS. We go one step further and pre-compute the object summaries for all t R∈DS DS. However, we do not
keep these OSs, because they are too expensive to store (each of them may involve thousands of tuples). Instead, we only use these
OSs to compute a small number of statistics that facilitate the computation of scores of the OSs. Specifically, we compute avdl OS( )
(i.e., the average size of all OSs), df OS( )w (i.e., the number of occurrences of each keyword w in object summaries, used to calculate
idf OS( )w ) for each possible keyword w, and dl( ), which is the size of each OS . In other words, we keep for each tuple in the

database (which could potentially be a tDS), the size of the corresponding object summary. In addition, for each thematic relation Rj
Th

of the GDS, we index for each tDS the total number of times that it can join with the tuples in Rj
Th, denoted as M t( )R DSj

Th
. We also index

for each tDS, the maximum number of times it can join with the same tuple from Rj
Th, denoted as m t( )R DSj

Th
. We simply denote

M t( )R DSj
Th

and m t( )R DSj
Th

as M and m respectively for simplicity when there is no ambiguity in the context. Finally, we adopt a
reachability index, where for each t R∈DS DS and for each Rj

Th in the corresponding GDS, we keep the set of tuples in Ri for which there

is join path to tDS. Since such an exact reachability index is too expensive to store (quadratic to the number of tuples in the database),
we resort to an approximate solution utilizing bloom filter (BF) sketches [27]. A BF is a space and time efficient probabilistic data
structure that can be used to test whether an element is a member of a set. In our case, BF sketches store reachability relationships
between tuples approximately (i.e., they include false positives). The reason for storing these additional statistics and the BFs will
become apparent in Section 5.3, where we will describe our search algorithm.

5. Approaches

After having preprocessed and indexed the factors that are involved in the scoring of an OS w.r.t. a query Q, a brute-force method
to solve our ranking problem is to compute all complete OSs that include the identifying keywords q1 and then rank them by their
scores. However, such an approach requires computing all the OSs at their entirety, which is an expensive process. In this section, we
propose an alternative approach, which avoids the computation of the OSs. Namely, we re-formulate the problem to a kGBJ, i.e. we
compute only the join paths between the data subject tuples (i.e., those that contain the identifying keywords q1) against the thematic
tuples (i.e., those that contain the thematic keywords q2). In addition, since our objective is to find only the top-k OSs with the
highest scores, we propose an optimized search technique that avoids computing join paths where possible, if these do not contribute
to the top-k OSs. For this purpose we use the aforementioned preprocessed information to derive effective bounds. For the ease of
discussion, we will first assume that there is a single RDS (where the DS stem from) and a single RTh (i.e., all tuples t that include
keywords from q2 are in a single relation). In Section 6, we will deal with the more general case where RTh consists of more than one
relations.

5.1. Problem reformulation

To compute the score of an OS (see Section 3), we observe that the computation of the entire OS is not necessary; we only need to
know dl( ) and the thematic tuples that link to tDS via join paths. Consider the scenario where a user, who is looking for scholars
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whose names contain “Chen” and are experts in data mining or database, submits a query Q = 〈{“Chen”}, {“mining”, “database”}〉.
Given the corresponding GDS of Author in Fig. 2, the naive approach will compute all the Chen OSs at their entirety and calculate the
scores while traversing the OS trees. This way we may retrieve thematic tuples containing neither “mining” nor “database”, which do
not contribute to the final scores of the respective OSs. Such IO/CPU time waste is more significant when the nodes in the GDS have a
large fan-out (which leads to a great number of thematic tuples), as the thematic keywords usually do not have a very high selectivity.

Therefore, we reformulate our OS ranking problem as a top-k Group By join problem (kGBJ) that takes as input a relation RDS,
which includes the tDS of all OS that have to be ranked, and one or more relations RTh in the GDS of RDS, which include tuples t that
contain any keyword w q∈ 2. kGBJ first selects only the candidate data subject tuples t R∈DS DS, denoted as R q( )DS

1 , such that tDS

contains q1 and only the related thematic tuples t R∈ Th, denoted as R q( )Th
2 , such that any keyword w q∈ 2 is contained in t. kGBJ then

joins the two sets of tuples using the GDS relation graph and groups the join pairs by tDS; this way we can obtain all factors that we
need to compute the score of each OS. Finally, the k OSs with the highest scores are the output.

5.2. Baseline: Bi-Directional (BD) approach

A baseline approach for solving the kGBJ problem is to follow the approach of a conventional database engine. Specifically, two
selection operations are first applied on RDS and RTh to select only the set of tuples R q( )DS

1 and R q( )Th
2 in them that include keywords

in q1 and q2, respectively. Then, the results of the selections are joined via the join path that connects RDS and RTh in GDS. Since, in
general, a bushy join evaluation plan would be used, which would minimize the number of intermediate results produced, we call
this approach Bi-Directional (BD) kGBJ evaluation. The bi-directional strategy has also been used in early work on R-KwS [28].

In particular, BD first computes the join path (JP) fromGDS that connects RDS to the thematic relation RTh. For example, for query
Q = 〈{“Chen”}, {“mining”, “database”}〉, suppose the DS relation and the thematic relation are RAuthor and RConference respectively, as
shown in Fig. 2, the corresponding join path is RAuthor–RPaper–RConfYear–RConference.

Then, BD estimates the optimal meeting point in a bushy evaluation plan that has R q( )DS
1 and R q( )Th

2 at its two ends. In other

words, the evaluation plan considered consists of a left-deep plan, starting by joining R q( )DS
1 with its next relation in the JP and

continuing this way and a right-deep plan, starting by joining R q( )Th
2 with its previous relation in JP and continuing this way.

Eventually, the two paths are joined at a meeting point. As in a query optimizer, given the sizes of R q( )DS
1 and R q( )Th

2 , the estimation
of the optimal meeting point is done with the help of statistics; specifically, by knowing the expected number of join results between
neighboring relations in our relational schema, we can estimate the costs and number of results for each pair of relations to be joined
and we can select the meeting point that minimizes the total join cost of BD. Fig. 4 illustrate 3 possible meeting points (as root
nodes) of the aforementioned query. Note that this heuristic does not consider all the possible joining plans, which are of exponential
scale w.r.t. the length of the join path.

After computing the join, the results are grouped by tDS; i.e., for each distinct t R q∈ ( )DS DS
1 , for each join result that includes tDS,

the tuple t R∈ Th included in the result contributes to score q( , )2 2 , where is the OS of tDS (see Eq. 2). All other factors required to
complete the computation of score Q( , ) (i.e., dl( ), avdl OS( ), etc.) are obtained from the precomputed data as discussed in Section
4. Finally, the OSs are ranked based on their scores and the k ones with the highest scores are output.

5.3. Top-k BD (kBD) approach

The rationale of this algorithm is to avoid the entire BD traversal and processing of our input (i.e. of R q( )DS
1 and R q( )Th

2 ). Our
algorithm achieves this by estimating upper and lower bounds for each OS and by managing them in descending order of their upper
bounds in a max-heap. Then, we iteratively process the OSs with the largest upper bound by tightening bounds until we produce the
top k OSs. Hereby, we firstly discuss OSs upper and lower bounds estimations and then their top-k generation.

5.3.1. Upper and lower bounds of OSs
We firstly define an initial score of an OS that disregards the contributions of any thematic tuples as follows:

In Im t
α α dl

avdl OS

( ) = ( )· 1

1 − + · ( )
( )

DS

(7)

where avdl OS( ) and dl( ) can be pre-calculated as discussed in Section 4. Then, we have

Fig. 4. Meeting Points Example.
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∑score Q In n s t q( , ) = ( )· · ( , )
t R q

j j
∈ ( )

2
j

Th
2 (8)

where nj denotes the number of times a thematic tuple tj appears in OS . Let N n= ∑t R q j∈ ( )j
Th

2
and let M n= ∑t R j∈j

Th (as defined in

Section 4). Obviously, R q R( ) ⊆Th
2

Th, hence N M≤ . Therefore, score Q( , ) is upper-bounded by In M s t q( )· · (^, )2 , where t R q^ ∈ ( )Th
2 is

the tuple with the largest s(·) score. We denote s t q( , )2 as s t( ) for simplicity when there is no ambiguity in the context.

Specifically, let us assume that all the thematic tuples in R q( )Th
2 are sorted in descending order of their s(·) scores, and that ti is the

i-th tuple after sorting. Suppose that we have examined the first l thematic tuples in RTh so far. Then, LB( ) is a lower bound of the
final score of and defined as

∑LB In n s t( ) = ( )· · ( ).
j

l

j j
=1 (9)

Let σ n= ∑ j
l

j=1 ; we can easily derive that score Q( , ) is upper bounded by UB Q( , )1 , which is defined as

UB Q LB In M σ s t( , ) = ( ) + ( )·( − )· ( ).l1 +1 (10)

Example 1. Let In( ) = 1.0, M = 13 and m = 4, Fig. 5(a) shows an example on how to calculateUB (·)1 . Here, we found 2 actual joins
between and t1 (depicted with a solid arrow) and thus LB( ) = 1.8. Therefore, we assume all the remaining possible joins M σ− ,
13 − 2 = 11 (depicted with dotted arrows) occur between and t2, since t2 is the tuple with the largest s(·) score among all other
tuples in R q( )Th

2 . Therefore, UB ( ) = 1.8 + 1.0.8 = 10.61 . Fig. 5(b) illustrates the updated UB (·)1 score after we find another join
between and t2.

AlthoughUB (·)1 is a correct upper bound of score Q( , ), it is not a tight upper bound as we assume that all the remaining possible
joins are of score s t( )l+1 , which correspond to the tuple with the next largest score. As we explained in Section 4, for each data subject
tDS, we also index m, the maximum number of times a thematic tuple in RTh can join with tDS. This information can be utilized to
obtain a tighter bound by assuming that each tuple in R q( )Th

2 can join only up to m times with tDS and thus consider possible joins

Fig. 5. Calculating the Upper Bound Scores of an OS (In( ) = 1.0, M = 13, m = 4).
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with tuples with smaller score than that of score s t( )l+1 . Let γ m R q l M σ= min{ ·(| ( )| − ), − }Th
2 be the total number of joins that can be

found between tDS and all the remaining thematic tuples and let d γ m= ⌊ / ⌋and r γ m= mod . Then, we can define a tighter upper bound
as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑UB Q LB In s t m s t r( , ) = ( )) + ( )· ( )· + ( )·

j

d

l j l d2
=1

+ + +1
(11)

Example 2. Fig. 5(c) shows an example on how to calculate UB (·)2 . We have two actual joins with t1, thus we have 11 remaining
joins to assign in order to obtain an upper bound. Since m = 4, we distribute the 11 joins to the remaining thematic tuples as
follows: we assign 4 joins to tuples t2 and t3 and the remaining 3 joins to t4. Therefore, UB ( ) = 1.8+2
1.0 × 4 × 0.8 + 1.0 × 4 × 0.7 + 1.0 × 3 × 0.5 = 9.3 . Fig. 5(d) illustrates the updated UB (·)2 score after we find another one join
between and t2.

In addition, with the help of bloom filters (BF), we can further tighten the aforementioned upper bound by considering only
actual joins between tDS and thematic tuples. In particular, in Eq. (11) we assume that tDS can join m times with each of the
remaining thematic tuples, until it reaches the total amount of M joins or the end of the thematic list. However, if a tuple pair (tDS, tj)

does not pass the BF test, then we know for sure that tDS cannot join with tj via the given join path. Hence, we can safely skip tj and
consider the next thematic tuple tj+1. Note that, the use of BF does not affect correctness as they are only used in order to obtain a
closer bound. Assume that the sequence of tuples satisfying the BF test are ta1

, ta2
,⋯, tad+1

and the corresponding upper bound of joins
is m, except for the last tuple where we assume we have r joins. Then, we can estimate a tighter bound as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑UB Q LB In m s t r s t( , ) = ( ) + ( )· · ( ) + · ( ) .

j

d

a a3
=1

j d+1
(12)

It is not difficult to verify that UB (·)3 is the tightest bound of all the aforementioned upper bounds, i.e., UB UB UB(·) ≥ (·) ≥ (·)1 2 3 .
Note that hereafter we use UB (·)3 when we refer to the upper bound score of an OS.

Example 3. Fig. 5(e) shows an example on how to calculate UB (·)3 . We have LB( ) = 1.8 and we still have 11 possible joins
according to M. In contrast to the previous cases, we know that cannot join with t3, t4 and t6, which means that we can disregard
these tuples while estimating bounds. Analogously, we can distribute the 11 joins as follows: 4 joins to tuples t2 and t5 and the
remaining 3 joins to t7. Therefore,UB ( ) = 1.8 + 1.0 × 4 × 0.8 + 1.0 × 4 × 0.5 + 1.0 × 3 × 0.2 = 7.63 . Fig. 5(f) illustrates the updated
UB (·)3 score after we find an additional join between and t2.

5.3.2. Top-k Bi-Directional (kBD) Algorithm
Hereby, we describe how the kBD algorithm computes the kGBJ results using the proposed bound estimation method (Algorithm

1). First, kBD algorithm sorts all the thematic tuples in R q( )Th
2 in descending order of their s(·) scores (according to Eq. 3) and

generates the lower bounds LB(·) and upper bounds UB(·) for all the DS tuples in R q( )DS
1 .

Algorithm 1. kBD Algorithm

kBD (R q( )DS
1 , R q( )Th

2 , k)

1: H≔∅;
2: L R q≔ ( )Th Th

2 ;

3: sort tuples in LTh in descending order of their s(·) scores;
4: for each w.r.t. tDS in R q( )DS

1 do

5: LB( )≔0; UB( )≔ CALCUB ;
6: insert into H with priority UB( );
7: while k H> 0 ∧ is not empty do
8: pop cur from H;
9: H≔next .top();
10: if LB UB( ) ≥ ( )cur next then
11: report cur as a result;
12: k k≔ − 1;
13: else
14: t ≔l the next tuple in LTh can join with cur;
15: n ≔ JOIN cur , tl;
16: LB( )≔cur LB n In s t q( ) + · ( )· ( , )cur cur l 2 ;

17: UB( )≔cur CALCUB cur;
18: push cur back into H with priority UB( )cur ;
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.
Then, it prioritizes the OSs w.r.t. theirUB(·) scores using a max-heap H, and select the OS with the largest upper bound score to

process as it is the most promising DS to appear in the result top-k set. We denote the selected OS as cur . Let the next OS be the one
that has the second largestUB(·) score in H, denoted as next. If LB UB( ) ≥ ( )cur next , then cur is guaranteed to be the best DS among
those in the heap H, hence it is pop out and reported as a result. Otherwise we calculate the amount of joins of cur with its next
thematic tuple and update accordingly the lower bound LB( )cur and upper bound UB( )cur . kBD terminates as soon as k DSs are
reported, or there are no more candidates in H.

The correctness of this branch-and-bound approach can be verified by the fact, that the algorithm outputs the OS, cur, with
LB UB( ) ≥ ( )cur next . Where next is the next OS in the Heap H; recall that H is ranked according to the upper bound score of OSs.
Thus, the returned OS will always have a score larger than (the upper bound of) all remaining OSs in the heap H.

Example 4. Fig. 6 illustrates a running example of kBD with 5 OSs and k = 1. In the beginning, 3 is the OS with the largestUB(·)
score, therefore 3 is chosen as the current and 1 as the next OS. Since LB UB( ) < ( )3 1 , we process 3 with its next thematic tuples,
and update the corresponding upper bound and lower bound score to 7 and 6.5 respectively (Fig. 6 (b)). In the next round, 1
becomes the most promising OS. We select 1 as the current and implement the joins between 1 and its next thematic tuple, which
derives LB( ) = 7.51 and UB( ) = 5.01 (Fig. 6 (c)). Then, 1 is selected again due to its highest UB(·) score among all those in H; the
upper bound and lower bound score of 1 is updated to 6.2 and 6.0 respectively (Fig. 6 (d)). Finally, 3 comes into the top of the
heap, and since LB UB( ) > ( )3 1 ( 1 is the next promising OS in this round), 3 is guaranteed to be the best OS inH. As a result, 3 is
reported and kBD terminates since we have found the top-1 best OS.

We now elaborate on the details of the two routines in Algorithm 1: JOIN and CALCUB.
JOIN t( , )cur l . This function finds the actual amount of joins between cur and tl (after succeeding the BF test) by implementing the

join. We adopt the same strategy for implementing joins (between the DS tuples and thematic tuples) as in the BD algorithm (Section
5.2); i.e., we use a meeting point. Then, we implement the joins from both sides, i.e. from the DS tuple and the thematic tuple sides
towards the meeting point relation and merge the two results instances. Note that one DS (or thematic) tuple can be chosen by the
kBD algorithm more than once. Therefore, we cache the join result instances of each DS (or thematic) tuple at the meeting point as to
avoid re-computation.

CALCUB ( )cur . This function calculates the UB (·)3 score, which is the tightest upper bound we estimate by using the BF index. A

Fig. 6. The kBD Algorithm for k = 1.
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naive update operation ofUB (·)3 score is to assign the remaining number of joins to those unseen tuples from scratch. However, this
method may query the same pair several times from the BF index. For example, in Fig. 5(e), the tuple pair t t( , )DS

5 is tested when
computing the initial upper bound score. In the next round, after we verify the tuple pair t t( , )DS

2 by finding the actual joins, the same
pair t t( , )DS

5 will be checked again if we calculate the upper bound score from the very beginning. In view of this, we propose to
maintain a list of thematic tuples that have been processed so far against the BF index for each DS tuples. Each time when a thematic
tuple is verified, we update the list incrementally. For instance, in Fig. 5(e), at first we have a list of thematic tuples {t1, t2, t5, t7}. After
verifying t2, we have 3 remaining joins since t2 can join with tDS only once. Therefore, we add one more join on the last tuple in the
list, i.e. t7 and the remaining 2 joins to t8, assuming that the pair t t( , )DS

8 pass the bloom filter test. In general, the incremental
maintenance of thematic tuples can be considered as a sliding window of size M on RTh; where each pair of ti and tDS tuples that
passes the BF test has size m or 0 otherwise (i.e. they fail the BF test).

6. Multiple thematic relations

Thematic keywords are very likely to be found in more than one relations of the GDS. In this section we show how to extend the
solutions in Section 5, i.e. BD and kBD, in order to solve the general case where more than one thematic relations are involved.

6.1. Baseline: Holistic BD (HBD) algorithm

Assume that there are j thematic relations in the data subject graphGDS, denoted as R R, …, j1
Th Th. A straightforward approach is to

extend the BD algorithm by running the BD algorithm j times, i.e. one for each thematic relation. We denote this method as the
Holistic Bi-Directional Algorithm (HBD).

For example, consider the Author GDS (Fig. 2) and assume that we have 3 thematic relations, R R R R= , =1
Th Conference

2
Th PaperCitedby

and R R=3
Th PaperCites. Then, HBD will implement the three corresponding join paths, (i.e. ,1 2 and 3 of Table 1) for R R,1

Th
2
Th

and R3
Th respectively and will aggregate the score for each tDS. Finally, HBD will output the top-k OSs.

6.2. Holistic Top-k BD (HkBD) algorithm
Given j thematic relations R R, …, j1

Th Th, we can extend analogously the original k BD algorithm by defining appropriate upper and
lower bound scores for each DS. We can easily see that the sum of the upper (resp. lower) bound scores of all join paths is the upper
(resp. lower) bound score of an OS, namely

∑UB Q UB Q( , ) = ( , ),H

i
i

(13)

∑LB Q LB Q( , ) = ( , ),H

i
i

(14)

where i ranges over all thematic paths andUB (·)i (resp.UB (·)i ) is the upper (resp. lower) bound score of as calculated by Eq.
(12) (resp. Eq. (9)) w.r.t. the join path i.

In contrast to the previous scenario where we had only one thematic relation, in this multiple thematic scenario, each DS can now
join with tuples from a set of thematic relations (i.e. from R R, …, j1

Th Th). Thus, we need a selection policy that will suggest from which
thematic relation to choose tuples to process next (i.e. to verify for actual joins against cur and update lower and upper bounds for
the cur, lines 15–17 of Algorithm 1). We suggest to choose and process a tuple from the thematic relation which we consider as the
most promising for the k GBJ. We consider as the most promising thematic relation the one that its next tuple can give the largest

m t s( )· (·)R DSi
Th

score w.r.t. query Q. The rationale is that by picking the thematic tuple with the largest m t s( )· (·)R DSi
Th

score, denoted as
tnext

Th , according to formulas (9) and (12), we will either (1) decrease LB (·)H further by finding new valid joins between cur and tnext
Th ; (2)

or decrease the UB (·)H further. Hence, either case will result in an earlier termination of the top-k algorithm.
According to our algorithm (see Algorithm 1) in line 15, we need to verify the joins of the identifying against thematic tuples as to

obtain their actual number of joins. We observe that in most cases, some of these join paths actually share a common prefix and thus
we can exploit this property by avoiding processing these join paths independently. Thus, in this algorithm we suggest to force the
meeting point to the common GDS prefix which is shared by all paths, (e.g., RPaper for the −1 3 example). Then, we can compute
the join result at RPaper once and reuse it later for the other paths.

On the other hand, according to the baseline HBD approach, the meeting point for the two join paths in our example ( 1 and

Table 1
Examples of Join Paths.

ID Path Name 20%DS| | 20%Th| |

1 DBLP: Author-Paper-ConfYear-Conference 68 K 593

2 DBLP: Author-Paper-PaperCitedBy 68 K 103 K

3 DBLP: Author-Paper-PaperCites 68 K 103 K

4 TPC-H: Cust.-Ord.-Lineitem-Partsupp-Part 30 K 400 K

5 TPC-H: Cust.-Ord.-Lineitem-Partsupp-Supplier 30 K K
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2) will be RConfYear and RPaper respectively. Thus, according to HBD, we need to cache the join-able tuples up to RConfYear relation for
the first path and join-able tuples up to RPaper for the second path. However, when we are computing the join results for the second
path, we cannot reuse the results from the first join cache, namely we have to re-compute the join starting from tDS again. Thus, the
HkBD approach is advantageous in this aspect over the HBD algorithm, as it facilitates reuse of join results.

7. Experimental evaluation

In this section, we experimentally evaluate the proposed thematic ranking of OSs and algorithms. Section 7.1 discusses the
implementation details, datasets and other experimental setups. Section 7.2 thoroughly evaluates the effectiveness of the proposed
thematic ranking of OSs with the help of human evaluators. Section 7.3 discusses the efficiency of our proposed solutions. We do not
present any comparisons against any other existing work; to the best of our knowledge, there is not any previous work that we can
meaningfully compare our results with. For instance, our work is semantically (and technically) different that existing work in R-KwS
and thus is not meaningfully comparable (see our thorough discussion about the differences in Section 2).

7.1. Setup

We implemented all our tested methods in C++ using a 3.40 GHz quad-core machine running Ubuntu 12.04, with 16 GB of main
memory. We use two databases: DBLP and TPC-H. DBLP contains 4 relations: Author, Paper, ConfYear, and Conference (Fig. 3).
The number of tuples of these relations are 341,623, 519,931, 11,588, and 2968 respectively. TPC-H includes 8 relations: Customer,
Orders, Part, Supplier, Partsupp, Lineitem, Nation, and Region. The cardinality of these relations are 150,000, 1,500,000, 200,000,
10,000, 800,000, 6,001,215, 25, and 5 respectively. We used scale factor 1 in generating the TPC-H dataset.

We use affinity scores of relations as calculated in [12], (alternatively an expert can define the GDS s manually, i.e., select which
relations to include in each GDS and their affinities). We use ObjectRank (global) [26] and ValueRank [4] to calculate the global
importance for the tuples in DBLP and TPC-H databases, respectively. Moreover, the scale parameter α was set to 0.5 as in [10].

Table 2 presents the sizes of the reachability indexes that we investigate per join path. For the bloom filter index, we set the false
positive probability to 0.01 and 0.001 for DBLP and TPC-H respectively. Note that, we used a smaller false positive probability for
the TPC-H bloom filter since the number of elements in the bloom filter of TPC-H is much larger. We also present, for comparison,
the sizes of an exact pair reachability index that stores the exact tuple pairs. In summary, we observe that the size of our BF index is
relatively small (and at the same time very fast) and thus can easily fit into main memory.

7.2. Effectiveness

We measure the effectiveness of our approach on the DBLP database only (the TPC-H database due to its synthetic content was
inappropriate for meaningful evaluation here). Since the DBLP database includes data about real people and their papers, we asked the
DSs themselves (i.e., fifteen authors listed in DBLP) to do the thematic ranking for sets of OSs for various thematic keywords (a similar
methodology was also used in [29]). None of our evaluators were involved in this paper. The rationale of this evaluation is that the DSs
themselves have best knowledge of their work and of other peers in the various thematic areas and thus can provide a better judgement
on such rankings. More precisely, firstly, we familiarized them with the concepts of OSs in general and their thematic ranking in
particular. Specifically, we explained that an OS includes information about a particular DS and that some of their tuples also include
text that can define some thematic context. Thus, the amount and location of the occurrences of such thematic words influence their
ranking for the particular thematic keyword. Then, we presented sets of OSs and asked them to rank them according to the thematic
keywords, e.g., a set of OSs for Chen authors and the thematic word “Mining”. Note that for each query, e.g., 〈{“Chen”}, {“Mining”}〉, the
result comprises only OSs that contain the thematic word (i.e., “Mining”). For instance, for the given query example, only 43 OSs out of
the 1982 Chen OSs contain the thematic keyword “Mining”. In order to further help them with their assessment we also provided them
with some useful statistical information; e.g., size in tuples, words, frequency of words and their location in the OS, etc. Table 3
summarizes the queries we used. More precisely, for each identifying keyword q( )1 we combine it with all thematic keywords q( )2 , thus
we have in total 6*4 = 24 distinct queries. We also depict the frequency of each keyword in the database. We measure the effectiveness
of our approach by using the following metrics (which have been previously used by earlier related work).

Metric 1: The amount of relevant top-1 answers (%#Rel) [10]: We compare the top-1 proposed by our evaluators
against the top-1 proposed by our algorithm. For example, for query 〈{“Chen”}, {“Mining”}〉 both users and our approach proposed

Table 2
Reachability indexes.

Path Bloom Filter Size Exact Pair Size

1 1.35 MB 9.06 MB

2 1.05 MB 7.05 MB

3 1.06 MB 7.13 MB

4 10.20 MB 45.79 MB

5 10.20 MB 45.79 MB
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Ming-Syan Chen as a top-1 result. More precisely, the %#Rel of Table 4 depicts the average (as a percentage) of the relevant top-1
results of all users for all queries (e.g., if our system matches in average the relevant top-1 of 18 out of 24 queries for DBLP database
per user, then %#Rel = 0.75).

Metric 2: Mean Reciprocal Rank (R-Rank) [10]: We search for the first relevant answer. Namely, R-Rank is 1 divided by
the rank at which the evaluators' top-1 result is returned or 0 if it is not returned by our approach, e.g., for the above example, R-
Rank would be 1 since both users and our approach proposed Ming-Syan Chen as a top-1 result. Similarly to %#Rel, the R-Rank of
Table 4 averages the R-Rank of our evaluators' top-1s answers per queries against ours. Evidently, the R-Rank results have a strong
correlation with the corresponding %#Rel results.

Metric 3: Precision/Recall: Precision is the number of relevant documents retrieved divided by the number of retrieved
documents. Recall is the number of relevant documents retrieved divided by the number of relevant documents (used in [5]). More
precisely, we compare the top-k relevant results proposed by evaluators and ours. Table 5 averages all evaluators precision for all
queries for various values of k . Note that, in our case since the two comparative sets have equal size then precision and recall are
equal (i.e. the set retrieved by our approach and the set proposed by evaluators have common size k). Note that as k increases the
precision/recall results are improved.

Metric 4: Ranking Correlation.2 Ranking correlation measures the correlation of the ranking of evaluators against our
approach for various values of k (this metric has been used in [5]). More precisely, in Table 5, we average the correlation of the users'
ranking with our methodology's. Here, we observe that the results of this metric have strong correlation with the precision/recall.

Discussion: The effectiveness results are very encouraging. Namely, %#Rel = 0.73, R-Rank = 0.85 whereas Precision and Recall
range in 92%-100% and correlation ranges in 0.84-0.99. Another interesting observation is that as k increases precision/recall and
correlation increases. Summing up, our thematic ranking model obtains very accurate results in finding the top-1 answer (metrics 1
and 2) and in finding the top-k results (metrics 3 and 4).

7.3. Efficiency

We evaluate the efficiency and scalability of our proposed algorithms, as a function of k and for various selectivities (i.e. amount
of tuples) of the data subject and thematic keywords tuple sets (i.e., R q| ( )|DS

1 and R q| ( )|Th
2 respectively, also denoted as DS| | and Th| | for

Table 3
Summary of effectiveness queries.

Identifying Keywords (q1) Frequency in DBLP

David 4235
Chen 1982
Wang 1778
Alan 660
John 3717
Nick 179
Thematic Keywords (q2) Frequency in DBLP

Mining 2961
System 32,253
Logic 65
Data 22,500

Table 4
%#Rel and R-Rank.

%#Rel R-Rank

0.73 0.85

Table 5
Precision(Recall) and ranking correlation.

k Precision (= Recall) Ranking correlation

5 92.0% 0.84
10 96.5% 0.92
15 98.8% 0.96
20 100% 0.98
25 100% 0.99

2 en.wikipedia.org/wiki/Rank_correlation
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short). Table 6 shows the values of the three parameters with the default values in bold font. For each selectivity setting, we select
randomly four different data subject tuple sets and four different thematic tuple sets; i.e., their combination will give us in total
16( = 4 × 4) different tuple sets. We run our algorithms on each tuple set combination and obtain the average runtime.

First, we compare the performance of k BD and BD on single join paths for various values of k . We set the selectivity of the data
subjects and thematic tuples to their defaults values (i.e., 20%; see Table 1). Fig. 7 shows their performance on 4 different join paths.
We omit the results for 2 as they are similar to that on 3. First, we observe that our proposed solution (kBD) constantly
outperforms the baseline method BD. We also observe, that since BD needs to conduct a complete join between data subject and
thematic relations, its performance is irrelevant to k and remains the same for all values of k . Then, we also show in Fig. 8(a) and (b)
the efficiency of HBD and HkBD on multiple thematic relations when k varies. We observe similar trends in the results as in the
single join path case.

Table 6
Parameters.

Parameter Values (Default Value)

k 1, 2, 4, 8, 16

DS| | (i.e., R q| ( )|DS
1 ) 5%, 10%, 20%, 40%, 80%

Th| | (i.e., R q| ( )|Th
2 ) 5%, 10%, 20%, 40%, 80%

Fig. 7. Efficiency of BD and kBD for Various Values of k.

Fig. 8. Efficiency of HBD and HkBD for Various k.
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Scalability: Fig. 9 shows the efficiency of BD and kBD when the selectivity of the data subject increases; we set the selectivity of
thematic tuples to 20% and k to 4. Note that the runtime of both methods increases as the number of data subjects increases. For
instance, in the BD algorithm, increasing DS| | results in the increase of join checks of DS tuples against the meeting point. In addition
to that, in the kBD algorithm, increasing DS| | results to more operations on H , i.e., more objects are popped and pushed in H . Fig. 10

Fig. 9. Efficiency of BD and kBD for Various DS| |(%).

Fig. 10. Efficiency of BD and kBD for Various Th| |(%).
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shows the performance of the algorithms when the selectivity of thematic tuples Th| | varies (with DS| | set to 20% and k to 4). For the
BD, the increase of thematic tuples results in larger joins of relations and thus an increase of the runtime. For kBD, the runtime
slightly increases when the selectivity of thematic tuples increases, since more thematic tuples need to be verified by the bloom
filters. However, when the selectivity of thematic keywords becomes larger the runtime decreases. This is because, with more
thematic tuples we can calculate the exact score of DSs (rather upper bounds) and thus reach the top-k condition more quickly.
Recall that we maintain the M t( )DS index for each DS (i.e., the total number of tuples that can join with tDS); thus if we find M t( )DS

joins with thematic tuples this means that the computed score is actually the final score. Fig. 11 and Fig. 12 illustrate the scalability
of HBD and HkBD for various DS| | and Th| | selectivities; runtime trends are similar as for single paths.

In summary, kBD and HkBD are always faster than their counterpart baseline algorithms; in some cases they are up to two orders
of magnitude faster. For instance, for the default setting on the DBLP 1, i.e., k = 4 and 20% of DS| | and Th| |, which corresponds to
68 K and 593 tuples in identifying and thematic relations respectively, kBD requires only 0.02 seconds, whereas BD requires 4.3
seconds (i.e., kBD is 180 times faster). For the multi-path queries on DBLP 1, 2 and 3 (using again default values with 68 K
and 207 K tuples in identifying and thematic relations respectively), HkBD requires 4.08 seconds whereas HBD requires 168.8
seconds (i.e., HkBD is about 40 times faster).

8. Conclusion

In this paper, we investigate the effective and efficient thematic ranking of OSs. The proposed ranking paradigm comprises (1) an
identifying keyword and (2) a thematic set of keywords. Our ranking gracefully combines IR style properties, authoritative ranking
and affinity. The proposed paradigm introduces computational challenges, as the proposed ranking formula considers many
parameters in a non-monotonic function and involves expensive group by joins. We conducted a thorough investigation and
proposed an efficient top-k group-by join algorithm. Our experimental evaluation on DBLP and TPC-H databases verifies both the
effectiveness of thematic OS ranking and the efficiency of our proposed algorithm.

In [12,13], the efficient and effective retrieval of size-l OSs (i.e. snippets of OS) was investigated. Our plans for future work
include the combination of thematic and other ranking approaches of OSs with the size-l OSs retrieval; namely, we plan to
investigate the concurrent generation and ranking of size-l OSs. In addition, we also plan to investigate the diversification of
thematic ranking results [30–32].
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