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Abstract—The Object Summary (OS) is a recently proposed tree structure, which summarizes all data held in a relational database

about a data subject. An OS can potentially be very large in size and therefore unfriendly for users who wish to view synoptic

information about the data subject. In this paper, we investigate the effective and efficient retrieval of concise and informative OS

snippets (denoted as size-l OSs). We propose and investigate the effectiveness of two types of size-l OSs, namely size-l OSðtÞs and

size-lOSðaÞs that consist of l tuple nodes and l attribute nodes respectively. For computing size-lOSs, we propose an optimal dynamic

programming algorithm, two greedy algorithms and preprocessing heuristics. By collecting feedback from real users (e.g., from DBLP

authors), we assess the relative usability of the two different types of snippets, the choice of the size-l parameter, as well as the

effectiveness of the snippets with respect to the user expectations. In addition, via thorough evaluation on real databases, we test the

speed and effectiveness of our techniques.
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1 INTRODUCTION

THE success of the web keyword search (W-KwS) para-
digm has encouraged the application of keyword search

in relational databases (R-KwS) [1], [2], [3]. The R-KwS para-
digm is used to find tuples that contain the keywords and
their relationships through foreign-key links. For example,
query “Faloutsos”+“Agrawal” over the DBLP database
returns tuples Faloutsos and Agrawal from the Author table
and their associations through co-authored papers. How-
ever, the R-KwS paradigm may not be very effective in
extracting information about a particular data subject (DS)
(e.g., “Faloutsos”), because it only retrieves tuples which con-
tain the keywords. On the other hand, users may wish to
view the context of most important tuples around a central
tuple (i.e., a data subject). In view of this, in our previous
work [4], we introduced the concept of object summary (OS);
an OS summarizes all data held in a database about a particu-
lar DS, searched by some query keyword(s). More precisely,
an OS is a tree with the tuple tDS containing the keywords
(e.g., Author tuple Christos Faloutsos) as the root node and
its neighboring tuples, containing additional information
(e.g., his papers, co-authors etc.), as child or descendant
nodes. The precise definition of an OS is discussed in Section
2; in a nutshell, a tuple is included in the OS if it is of high
affinity (based on link properties in the tuple network graph
of the database) and it is connected to tDS via a short path.

Example 1 illustrates the Christos Faloutsos OS in DBLP.
Note that the complete OS consists of 1,309 tuples and it

may not only be unfriendly to present to users that prefer a
quick glance first before deciding whether they are inter-
ested in the OS, but also expensive to produce. On the other
hand, an OS snippet of size l (denoted as size-l OS), com-
posed of only l representative and important tuples, may be
more appropriate. It is also in analogy to web search engines
which show small snippets of the query results (web pages),
in order for the users to select (click on) their most prefera-
ble ones. Example 2 illustrates the size-15 OS for Christos
Faloutsos, which includes only a tree of 15 tuples showing
the most important (representative) context of the corre-
sponding tDS.

Example 1. The OS for Christos Faloutsos

In this paper, we investigate in detail the definition and
generation of size-l OSs. We propose that the size-l OSs
should be a stand-alone size-l sub-graph of the complete
OS, composed of l important (tuple or attribute-value)
nodes only, so that the user can comprehend it without any
additional information. A stand-alone size-l OS should pre-
serve meaningful and self-descriptive semantics about the
DS. As we explain in Section 3, for this reason, the l nodes
should form a connected graph that includes the root of the
OS (i.e., tDS). To distinguish the importance of an individual
tuple node ti to be included in a size-l OS, a local importance
score is defined for ti by combining the tuple’s global
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importance score in the database with the tuple’s affinity [4]
in the OS respectively. Based on the local importance scores
of the nodes of an OS, we can find the partial OS of size l
with the maximum aggregate importance, which includes
nodes that are connected with the OS root.

Example 2. The size-15 OSs for Christos Faloutsos

Although a size-l OS is more concise than the corre-
sponding complete OS, the fact that it is a selection at the
tuple level enforces the co-existence in the snippet of all
attribute-value pairs in the same (selected) tuples, even
though the affinity or importance of different attributes may
vary. For example, in Fig. 1, if a paper is chosen to be
included in the size-l OS, essentially all values of the corre-
sponding tuple would be included (e.g., title of paper, num-
ber of pages, keywords, abstract, etc.), although only the
title may be of sufficient affinity or importance. While in the
preliminary version of this paper [5], we studied size-l OS
only at the tuple level, based on this observation, in this
paper, we also define and study a version of size-l OS which
includes the l representative and important attribute-value
pairs (as opposed to tuples) in the OS. We denote the snip-
pets at the tuple and attribute-value level as size-l OSðtÞ and
size-l OSðaÞ, respectively. Note that a size-l OSðaÞ is more
flexible in selecting tuples and information from them (i.e.,
partial information from the selected tuples may be
included in the snippet). For example, a size-l OSðaÞ for
Christos Faloutsos would prefer selecting more paper titles
over less but complete paper tuples.

The efficient computation of size-l OSs is a challenging
problem; a brute force approach that considers all candi-
date size-l OSs before finding the one with the maximum
importance can be very expensive. Thus, we first propose
an optimal algorithm based on dynamic programming,
which is efficient for small problems; however, it does
not scale well with the OS size and l. Then, in view of
this, we design two practical greedy algorithms and two

preprocessing algorithms. We provide an extensive exper-
imental study on the DBLP and TPC-H databases, which
includes evaluation of the effectiveness of the size-l OSs
concepts and comparative evaluation of the efficiency and
approximation quality of the proposed algorithms. In
order to verify the effectiveness of our framework, we
collected user feedback, e.g., by asking DBLP authors
(i.e., the DSs themselves) to assess the computed size-l
OSs of themselves. The users suggested that the results
produced by our method are very close to their expecta-
tions. We investigated in detail and verified the efficiency
and approximation quality of our algorithms.

Besides modeling answers to queries for data subjects
(DSs) in relational databases, OSs and size-l OSs have
many other applications. For example, OSs can automate
responses to data protection act (DPA) subject access
requests (e.g., the US Privacy Act of 1974, UK DPA of 1984
and 1998 [6] etc.). According to DPA access requests, DSs
have the right to request access from any organization to
personal information about them. Thus, data controllers of
organizations must extract data for a given DS from their
databases and present it in an structured form (data con-
trollers should ensure that the disclosed data excludes or
anonymizes information about other third parties [7]).
Size-l OSs can also be very useful in such applications, as
they enhance the usability of OSs. In general, a size-l OS is
a concise summary of the context around any pivot data-
base tuple, finding application in (interactive) data explo-
ration, schema extraction, etc.

A preliminary version of this paper covering the seman-
tics and algorithms for size-l OSðtÞs’ appears in [5]. Here,
we also propose and investigate size-l OSðaÞs and their
semantics and algorithms. As we explain and demonstrate
in Sections 3 and 8, respectively, size-l OSðaÞs are signifi-
cantly better in terms of usability than size-l OSðtÞs in data-
bases with relations having many attributes. In addition,
this paper introduces an optimized version of the DP algo-
rithm [5] that reduces time complexity from OðnlÞ to Oðnl2).
Moreover, this paper introduces a methodology for the
automatic selection of l (see Section 7). Finally, we provide a
more comprehensive evaluation for the usability of size-l
OSðtÞs and size-l OSðaÞs and efficiency of the algorithms.

2 BACKGROUND AND RELATED WORK

In this section, we first describe the concept of object summa-
ries (OSs), which we build upon in this paper. We then pres-
ent and compare with related work. To the best of our
knowledge no previous work has focused on the computa-
tion of size-l OSs.

2.1 Object Summaries

According to the keyword search paradigm of [4], [8] an OS
is generated for each tuple (tDS) found in the database that
contains the query keyword(s) as part of an attribute’s value
(e.g., tuple “Christos Faloutsos” of relation Author in the
DBLP database). An OS is a tree structure composed of
tuples, having tDS as root and tDS’s neighboring tuples (i.e.,
those associated through foreign keys) as its children/
descendants. To construct the OSs, the relations which hold
information about the queried DSs, denoted as RDS (e.g., the

Fig. 1. A Faloutsos OS with all attributes (DBLP).
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Author relation), and the relations linked around RDSs are
used. For each RDS, a Data Subject Schema Graph (GDS) is
generated. Fig. 3 illustrates the GDS for the Author relation
of the DBLP1 database, whose schema is shown in Fig. 2 (for
a GDS on TPC-H2, see [5]). A GDS is a directed labeled tree
with a fixed maximum depth that has an RDS as a root node
and captures the subset of the schema surrounding RDS;
any surrounding relations participating in loop or many to
many relationships are replicated accordingly.

In order to generate an OS, the relations from GDS which
have high affinity with RDS are accessed and joined. The
affinity of a relation Ri to RDS can be calculated using the
following formula:

AfðRiÞ ¼
X

j

wjmj � AfðRParentÞ; (1)

where j ranges over a set of metrics (m1;m2; . . . ;mn) and
their corresponding weights (w1; w2; . . . ; wn), and
AfðRParentÞ is the affinity of Ri’s parent to RDS. The metrics
scores range in [0, 1] and the corresponding weights sum to
1; thus, the affinity score of a node is monotonically non-
increasing with respect to the node’s parent. More precisely
we use four metrics: m1 considers the distance of Ri to RDS,
i.e., the shorter the distance the bigger the affinity between
the two relations. The remaining metrics consider the con-
nectivity of Ri on both the database schema and data-graph.
m2 measures the relative cardinality, i.e., the average num-
ber of tuples of Ri that are connected with each tuple in
RParent whereas m3 measures their reverse relative cardinal-
ity, i.e., the average number of tuples of RParent that are con-
nected with a tuple in Ri. m4 considers the schema
connectivity ofRi (i.e., the number of relations it is connected
to in the relation graph). A small connectivity of Ri suggests
bigger affinity with its RParent and RDS . All relations with
affinity higher than a threshold u are used in the OS genera-
tion. For instance, OS of Example 1 is generated using DS
“Christos Faloutsos”, the AuthorGDS of Fig. 3, and u = 0.7.

Instead of including complete tuples in the OS, we can
select only a subset of attributes per considered tuple. For
this purpose, the GDS can be refined to a GDSðaÞ, where
attributes from each relation are selected based on an

attribute affinity (i.e., AAfðRi:AjÞ) and a threshold (i.e., u0).
Fig. 3 illustrates the DBLP Author GDSðaÞð0:7Þ, while Fig. 4
illustrates the corresponding fraction of the Faloutsos OS
with attributes pruning (i.e., u ¼ u0 ¼ 0:7). In order to auto-
mate the process of assigning a score for each attribute (and
thus minimize input from DBAs or users), attributes are
clustered into disjoint sets (see [4] for more details). More
precisely, we define the following set of clusters for attrib-
utes: (1) the AN cluster comprising of naming attributes,
such as name, surname, first name, company name and so
on; (2) the AG cluster comprising of general attributes, such
as address, date of birth and so on; and finally (3) the AC

cluster comprising of attributes including comments,
descriptions, multimedia data and so on. For example, con-
sidering the DBLP Paper relation, the AN cluster includes
the Name attribute, the AG includes the Keywords, Pages,
Issue, Volume, DOI attributes and AC the Abstract attribute
(As future work, we plan to investigate the use of ontologies
as to enhance clustering quality and flexibility, e.g., more
and finer clusters, and thus facilitate tailored clustering sol-
utions to all kinds of databases.). Then, the affinity of each
cluster of attributes Ri.Aj to RDS can be calculated using the
following formula:

AAfðRi:AjÞ ¼ fðdAjÞ �AfðRiÞ; (2)

where AfðRiÞ is the affinity of the relation Ri to RDS and
fðdAjÞ is a discounting factor for the importance of the

Fig. 3. The DBLP author GDSðaÞ annotated with affinity and attributes
affinity (attributes with low transparency have affinity below u0 ¼ 0:7).

1. The DBLP (www.informatik.uni-trier.de/�ley/db/) version of
the Microsoft Academic Search database obtained at http://
academic.research.microsoft.com.

2. www.tpc.org/tpch/.

Fig. 2. The DBLP database schema.

Fig. 4. A fraction of the Faloutsos OS with filtering of attributes using

GDSðaÞð0:70; 70Þ:
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different clusters of attributes to the RDS. For example, after
clustering the attributes using this method, clusters AN , AG

and AC have discounting factors fðdAjÞ 1, 0.85 and 0.70,
respectively.

2.2 R-KwS and Ranking

R-KwS techniques facilitate the discovery of joining tuples
(i.e., Minimal Total Join Networks of Tuples (MTJNTs)
[3]) that collectively contain all query keywords and are
associated through their keys; for this purpose the con-
cept of candidate networks is introduced; see, for example,
DISCOVER [3], BANKS [1], [2], [9] and so on. The OSs
paradigm differs from other R-KwS techniques semanti-
cally, since it does not focus on finding and ranking can-
didate networks that connect the given keywords, but
searches for OSs, which are trees centered around the
data subject described by the keywords.

Pr�ecis Queries [10], [11], [12] resemble size-l OSs as they
append additional information to the result of a R-KwS (i.e.,
the nodes containing the keywords), by considering neigh-
boring relations that are implicitly related to the keywords.
More precisely, a pr�ecis query result is a logical subset of
the original database (i.e., a subset of relations and a subset
of tuples). For instance, the pr�ecis of query “Faloutsos”,
illustrated by Example 3, is a subset of the database that
includes the tuples of the three Faloutsos brothers and a
subset of their (common) Papers, Co-Authors, Conferences,
and so on. Pr�ecis queries also support the narrative presen-
tation of the results, e.g., “Christos Faloutsos is an Author
...”. In contrast, our result is a set of three separate size-l OSs
(one OS for each Faloutsos author). In this spirit, some
tuples are replicated in OSs when necessary; e.g., the com-
mon paper “On Power-low...” appears in all OSs. On the
contrary, pr�ecis queries do not replicate such information
and, compared to OSs, they do not provide a view of the
database centered around each of the data subjects, which
are related to the keywords (see our usability comparison in
Section 8.1.3). Pr�ecis, similarly to size-l OSs, may have a size
constraint. However, the selection of tuples in a pr�ecis is
random. In contrast, our approach uses algorithms that con-
sider affinity and importance scores when constructing a
size-l OS. Summing up, pr�ecis are different semantically
and technically from OSs.

Example 3. Pr�ecis of query “Faloutsos”

R-KwS techniques also investigate the ranking of their
results. Such ranking paradigms consider:

1) IR-Style techniques: which weight the amount of times
keywords appear in MTJNs [13], [14]. However, such tech-
niques have limitations when applied to databases in gen-
eral and also on OSs in particular. As they miss tuples that
are related to the keywords, but they do not contain them
[15]; e.g., when searching for ”Faloutsos”, tuples in relation
Papers also have importance although they do not include
the Faloutsos keyword.

2) Tuples’ Importance: which weights the authority flow
through relationships, e.g., ObjectRank [15], [16], ValueR-
ank [17], PageRank [18], BANKS (PageRank inspired) [1],
[2] and XRANK [19] and so on. In this paper we use tuples’
importance to model global importance scores and more
precisely global ObjectRank (for DBLP) and ValueRank (for
TPC-H) (note that our algorithms are orthogonal to how
tuple importance is defined and alternative methods are
applicable).

2.3 Other Related Work

Document summarization techniques have attracted sig-
nificant research interest [20], [21]. Web snippets [21] are
examples of document summaries that accompany search
results of W-KwSs in order to facilitate their quick pre-
view. They can be either static (e.g., composed of the first
words of the document or description metadata) or query-
biased (e.g., composed of sentences containing many
times the keywords) [20]. Still, the direct application of
such techniques on databases in general and OS in partic-
ular is ineffective; e.g., they disregard the relational associ-
ations and semantics of the displayed tuples. For example,
papers authored by Faloutsos (although they do not
include the Faloutsos keyword) have importance analo-
gous to their citations and authors; this is ignored by doc-
ument summarization techniques. Another concept of
summarization similar to ours is entity summarization in
semantic knowledge graphs. More precisely in [22], given
a semantic knowledge graph and an entity represented by
a graph node q, a summary of q is a subset of the graph of
size l with nodes surrounding node q. Other relevant
work is also RELIN [23] that uses a random walk on a
graph of features characterizing the entity.

XML keyword search techniques (e.g., [24]), similarly
to R-KwSs, facilitate the discovery of XML sub-trees that
contain all query keywords (e.g., “Faloutsos”+“Agrawal”).
Analogously, XML snippets [25] are sub-trees of the com-
plete XML result, with a given size, that contain all key-
words. An apparent difference between size-l OSs and
XML snippets is their semantics which is analogous to the
semantic difference between complete OSs and XML
results. Therefore, their generation is a completely differ-
ent problem. A common aspect of size-l OS and XML
snippets is that they are sub-trees of the corresponding
complete trees, stemming from the need to preserve self-
descriptiveness.

The information unit [26] approach proposes analogous
search semantics with OSs for the web. Namely, the result
of a web keyword search is no longer a single physical doc-
ument, but a virtual document that consists of a set of linked
web pages that collectively contain all keywords. Sphere-
Search [27] investigate keyword search on heterogeneous
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data from unstructured (web), semi-structured (XML), and
structured data (databases). These techniques adopt and
extend the semantics of R-KwS by searching of associations
of nodes including the keywords.

3 SIZE-l OS

A size-l OS keyword query consists of (i) a set of keywords,
(ii) a value for l and (iii) the type of the l nodes (either tuples
or attributes). The result comprises a set of size-l OSs, one
for each data subject which qualifies the keyword query.
Next, we provide a uniform approach of addressing the two
types of results by proposing OSðtÞ and OSðaÞ data struc-
tures and then detailed definitions for size-l OSðtÞs and
size-l OSðaÞs and measures for assessing their quality.

3.1 OSðtÞ and OSðaÞ Data Structures

In order to address in a uniform way size-l OSðtÞs and size-l
OSðaÞs we propose the following structures.

Definition 1 (OSðtÞðtÞ). An OS is a tree rooted at tDS where each
node carries a weight and corresponds to an OS tuple.

Definition 2 (OSðaÞðaÞ). Given an OSðtÞ tree, the corresponding
OSðaÞ is a tree where each node corresponds to an OS attri-
bute, carries the attribute’s weight, and is constructed as fol-
lows. Each tuple node ti of the original OSðtÞ is substituted by
a tree tiðaÞ of its attributes, rooted at the attribute with the
largest local importance (which is usually a naming attribute
as it has the largest AAf) and has as children nodes (i) the rest
of the attributes of ti and (ii) the tiðaÞs of the corresponding
tuple child nodes of ti.

For this purpose, we apply the approach discussed in
Section 2, where attributes are clustered into disjoint sets of
attributes (i.e., AN , AG and AC) and are assigned an attribute
affinity score (denoted as AAfðRi:AjÞ. For instance, con-
sider the example in Fig. 5, where the original tuple t1 is
substituted by the tree t1ðaÞ which consists of the root node
t1:AN and child nodes t1:AG1, t1:AG2; . . . ; t1:AC1, t1:AC2; . . . ;
Similarly, the child tuple t2 is substituted by t2ðaÞ and the
corresponding t2:AN becomes a child of t1:AN . Note, that
t2:AN has as parent the t1:AN and also as children the ANs
of all its tuples children.

Note that in both cases we have a weighted tree. Hereby,
we denote as OSð:Þ or size-l OSð:Þ the general case of
addressing either type.

3.2 Size-ll OSð::Þ
Definition 3 (Candidate size-l OSð:Þ) Given an OSð:Þ and an

integer size l, a candidate size-l OSð:Þ is any subset of the OS
composed of l nodes (i.e., tuples or attribute-value pairs), which
form a tree rooted at tDS (i.e., the root of the OS tree).

Definition 3 guarantees that the size-l OS remains
stand-alone, (so users can understand it as it is without any
additional tuples). Consider the example of Fig. 4 which is a
fraction of the Faloutsos OS; even, if the “Rþ-tree. . .” paper
has less local importance (e.g., 47) than the co-author(s)
Sellis (e.g., 55) and Roussopoulos (e.g., 52), we cannot
exclude the paper and include only the co-authors. The
rationale is that by excluding the paper tuple we also
exclude the semantic association between the author and
co-author(s), which in this case is their common paper. Also
note that a size-l OS will not necessarily include the l tuples
(or attributes) with the largest importance scores. For exam-
ple, the co-author Roussopoulos, although with larger
importance than the particular paper, may have to be
excluded from a size-l OSðtÞ (e.g., from a size-3 OSðtÞ which
will consist of (i) author “Faloutsos”, (ii) paper “The R+-
tree” and (iii) co-author “Sellis”). Similarly, size-l OSðaÞ
should remain stand-alone by including connecting nodes
attributes to the root.

Given an OS, we can extract exponentially many size-l
OSð:Þs that satisfy Definition 3. In the next section we define
a measure for the importance (i.e., quality) of a candidate
size-l OSð:Þ. Our goal then would be to retrieve a size-l
OSð:Þ of the maximum possible quality.

3.3 Importance of a Size-ll OSð::Þ
The (global) importance of any candidate size-l OSð:Þ S,
denoted as ImðSÞ, is defined as

ImðSÞ ¼
X

ni2S
ImðOS; niÞ; (3)

where ImðOS; niÞ is the local importance of node ni (to be
defined below). We say that a candidate size-l OS is an
optimal size-l OS, if it has the maximum ImðSÞ (denoted as
maxðImðSÞÞ) over all candidate size-l OSs for the given OS.

Local Importance of Tuples. The local importance of
ImðOS; tiÞ of each tuple ti in an OS can be calculated by

ImðOS; tiÞ ¼ ImðtiÞ �AfðtiÞ; (4)

where ImðtiÞ is the global importance of ti in the database.
We use global ObjectRank and ValueRank to calculate
global importance, as discussed in Section 2.2. AfðtiÞ is the
affinity of ti to the tDS; namely the affinity AfðRiÞ of the cor-
responding relation Ri where ti belongs, to RDS. This can be
calculated from GDS using Equation (1), as discussed in Sec-
tion 2.1 (alternatively, a domain expert can set AfðRiÞs man-
ually). For example, if tuple ti is paper “The Rþ-tree...” with
ImðtiÞ ¼ 51 and AfðtiÞ ¼ AfðRPaperÞ ¼ 0.92 (see the affinity
on Author GDS in Fig. 3), then ImðOS; tiÞ ¼ 51 � 0:92 ¼ 47.
Multiplying global importance ImðtiÞ with affinity AfðtiÞ
reduces the importance of tuples that are not closely related
to the DS. The use of importance and affinity metrics is
inspired by other earlier work; e.g., XRANK and pr�ecis
employ variations of importance and affinity [12], [19].

Fig. 5. OSðaÞ based on AN , AG and AC clusters.
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Local Importance of Attributes. Similarly, the local impor-
tance ImðOS; ti:ajÞ of an attribute aj in a tuple ti in an OS
can be calculated by

ImðOS; ti:ajÞ ¼ ImðtiÞ � AAfðti:ajÞ; (5)

where ImðtiÞ is the global importance of ti in the database
(and can be calculated as for ImðOS; tiÞ) and AAfðti:ajÞ is
the attribute affinity of ti:aj to the tDS, i.e., AAfðRi:AjÞ and
can be calculated by Equation (2). As shown in Equation 2,
AAfðti:ajÞ is the result of multiplying the affinity AfðRiÞ to
RDS of the relation Ri where ti belongs, with a function of
the Attributes Cluster’s Affinity Ranking fðdAjÞ. (We used
the settings in [4] to calculate fðdAjÞ; alternatively, a domain
expert can set AAfðti:ajÞs manually.)

3.4 Problem Definition

The generation of a size-l OS is a challenging task because
we need to select l nodes that are connected to the root of
the tree and at the same time result to the maxðImðSÞÞ.
Hence, the problem we study in this paper can be defined
as follows:

Problem 1 (Find an optimal size-l OSð:Þð:Þ). Given a tDS, the
corresponding GDS and l, find the candidate size-l OSð:Þ S of
maximum ImðSÞ.
A simple approach for solving this problem is to first

generate the complete OS, also denoted as OSð:Þ and then
determine the optimal size-l OSð:Þ from it. A more economi-
cal approach is to produce initially a preliminary partial OS,
denoted as prelim-l OSð:Þ, instead of a complete OSð:Þ. The
rationale of a prelim-l OSð:Þ is to avoid the extraction and
further processing of fruitless tuples and their attributes
that are not promising to make it in the size-l OSð:Þ. Choos-
ing to use either approach (complete or preliminary OSð:Þ),
the problem can thus be solved in two phases; namely,
(phase 1) generation of a complete or prelim-l OSð:Þ from
the corresponding GDS and (phase 2) determination of a
size-l OSð:Þ from a given initial OSð:Þ (either complete or
prelim-l OSð:Þ).

We first focus on the second sub-problem (i.e., comput-
ing a size-l OSð:Þ from a given initial OSð:Þ) and propose a
dynamic programming algorithm (see Section 4), which
finds the optimal solution and two greedy heuristics (see
Section 5), which find sub-optimal solutions. Then, we brief
a pre-processing algorithm that produces a prelim-l OSð:Þ.
Recall that the introduction of the OSðaÞ and OSðtÞ data
structures facilitates the uniform reuse of all these algo-
rithms for either type.

4 OPTIMAL SIZE-l DETERMINATION ALGORITHM

(DP ALGORITHM)

This section describes a dynamic programming (DP) algo-
rithm, which, given an initial OS tree, finds the optimal
size-l OS, i.e., an l-sized subtree Sroot;l of the OS rooted at
tDS, such that ImðSroot;lÞ is the maximum among all such
subtrees. In other words, our objective is to find a subtree of
the OS tree, which includes the OS root, it has l nodes, and
the sum of its node weights is maximized. For example, con-
sider the OS tree shown in Fig. 6, where each node contains
an identifier and a weight (i.e., local importance). The

optimal size-5 OS is node-set Sopt ¼ f1; 4; 5; 11; 13g with
sum of weights ¼ 231.

Assume that the root of the size-l OS Sroot;l has a child v
and the subtree Sv;i rooted at v has i nodes. Then, Sv;i should
be the optimal size-i subtree rooted at v. DP operates based
on exactly this assertion; for each candidate node v to be
included in the optimal synopsis and for each number of
nodes i in the subtree of v that can be included, we compute
the corresponding optimal size-i synopsis and the corre-
sponding sum of weights. The optimal size-i synopsis
rooted at v is computed recursively from precomputed size-
j synopses (j < i) rooted at v’s children; to find it, we
should consider all synopses formed by v and all size-(i� 1)
combinations of its children and subtrees rooted at them.
For example, to compute the optimal size-5 OS of the OS
tree shown in Fig. 6, we need to consider all combinations
of the root’s children and optimal subtrees rooted at them,
such that the total number of selected nodes is four (e.g.,
one such combination is nodes f2; 4; 10; 6g).

Our DP algorithm systematically solves this problem and
minimizes the number of required computations. Toward
this goal, the algorithm computes two quantities for each
node v of the OS:

� Sv;i. Let dðvÞ be the depth of node v in OS (the root
node has depth 0). The subtree rooted at dðvÞ can
contribute at most l� dðvÞ nodes to the optimal
solution, because in every solution that includes v,
the complete path from the root to v must be
included (due to the fact that the root node should
be included and the solution must be connected).

Fig. 6. The DP algorithm: size-4 OS and the corresponding S and P sets
(in bottom-up postorder).
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The DP algorithm computes for all i 2 ½1; l� dðvÞ�,
Sv;i: the optimal size-i subtree rooted at v. For
example, let l ¼ 5, and consider node v ¼ 4 in the
tree of Fig. 6. Since dð4Þ ¼ 1, DP must compute
S4;1, S4;2, S4;3, and S4;4. We denote by ImðSv;iÞ the
respective weight.

� Pv;i. In addition, for each node v and for all
i 2 ½1; l� dðvÞ�, DP computes a set Pv;i of subtrees
which (i) collectively have i nodes, (ii) are all rooted
at v or its left siblings, and (iii) have the maximum
sum of weights among all possible collections of sub-
trees that satisfy (i) and (ii). For example, in Fig. 6,
P ð4; 4Þ ¼ f2; 4; 11; 13g, because among all possible
sets of subtrees rooted at node 4 or any of its siblings
on the left, the subtrees with the maximum sum of
weights are node 2 and the path from node 4 to node
13. We denote as ImðPv;iÞ the respective weight.

The ultimate objective of DP is to compute Sroot;l; this
result is computed by a bottom-up, postorder traversal of
the nodes in the OS, up to depth l� 1. Nodes at depth l� 1
can only contribute themselves in the optimal solution
(nodes at depth at least l cannot participate in a size-l OS).
For each encountered node v during the traversal, sets Sv;i
and Pv;i are computed for all i 2 ½1; l� dðvÞ� as follows:

Sv;i ¼
v if i ¼ 1
v [ Prc;i�1 otherwise;

�
(6)

where rc is the rightmost child of v;

Pv;i ¼
Sv;i if v has no left sibling
Pls;j [ Sv;i�j otherwise;

�
(7)

where ls is the left sibling of v and
j ¼ argmax0�j�i ImðPls;jÞþ ImðSv;i�jÞ.

Note that due to the order of nodes in the traversal (bot-
tom-up, left-to-right), when a node v is accessed all neces-
sary information about its rightmost child and its left
sibling have already been computed and can directly be
used to compute all Sv;i’s and Pv;i’s. Note also that the com-
putation of each Sv;i is done at constant time given the pre-
computed Prc;i�1; i.e., the optimal subtree of i nodes rooted
at node v includes v and the set of optimal subtrees with at
most i� 1 nodes rooted at v’s children. Finally, Pv;i for a
node v can be derived from only the Pls;j’s stored at the left
sibling ls of v, by considering all cases of having j nodes in
any of v’s left siblings and i� j nodes in a subtree of v, for
j ¼ 0 to i.

The table in Fig. 6 illustrates the Sv;i and Pv;i sets com-
puted for each node in the OS tree in postorder, for l ¼ 4.
Note that due to the small size of the complete OS tree some
of the Sv;i’s do not exist (e.g., there is no S5;2 since node 5
has no children). To illustrate the functionality of DP,
assume that the current node is v ¼ 4 and the objective is to
compute S4;3 and P4;3. For S4;3, we only need P11;2, since 11
is the rightmost child of node 4. P11;2 has already been com-
puted from our visit to node 11 and P11;2 ¼ f11; 13g. There-
fore S4;3 ¼ f4; 11; 13g. To compute P4;3, we should consider
the best combination of P3;3, P3;2 [ S4;1, P3;1 [ S4;2, and S4;3,
which is S4;3, thus P4;3 ¼ f4; 11; 13g. Note that all P4;i’s will
be considered in the computation of all P5;i’s; all P5;i’s will
be considered in the computation of all P6;i’s, and

eventually P6;3 will be considered in the computation of the
ultimate target: S1;4.

Algorithm 1 is a high-level pseudocode of the DP algo-
rithm. In terms of complexity, we need to compute for each
node v in the OS up to depth l� 1 up to l� dðvÞ Sv;i and Pv;i
sets; i.e., OðlÞ sets in total. Each Sv;i takes constant time to
compute, but each Pv;i takes OðiÞ time. Therefore, the cost of
processing each node is Oðl2Þ and the overall cost of DP is
Oðnl2Þ. For large values of l, DP becomes impractical and
we resort to the greedy heuristics described in the next sec-
tion. The space complexity of the algorithm is just Oðl2Þ; for
each node v, the sets Sv;i are only used to compute the sets
Pv;i and afterwards they can be dumped; in turn, the sets
Pv;i are only used by the next node v0 in the order (right sib-
ling or parent of v) and afterwards they can also be cleared
(recall that for each node only information from the left sib-
ling and rightmost child is required). The following lemma
proves the optimality of DP (for a proof, see [5]).

Lemma 1. Algorithm 1 finds the optimal size-l OS.

5 GREEDY SIZE-ll ALGORITHMS

The cost of the DP algorithm can be high for large values
of l, so in [5], we investigate two greedy heuristics that
aim at producing a high-quality size-l OS, not necessarily
being the optimal. Similarly to DP, both heuristics can
take as input either an OSðtÞ or a OSðaÞ tree (which can be
either a complete or a prelim-l OSs) and produce a corre-
sponding size-l OSðtÞ or size-l OSðaÞ, respectively. For the
sake of completeness and due to space constraints, we
only include short descriptions of these two methods. For
detailed descriptions and analytic examples the reader is
referred to [5].

5.1 Bottom-Up Pruning Size-ll Algorithm

This algorithm, given an initial OS iteratively prunes from
the bottom of the tree the n� l leaf nodes with the smallest
local importance, where n is the number of nodes in the
complete OS. The rationale is that since nodes need to be
connected with the root and lower nodes on the tree are
expected to have lower importance, we can start pruning
from the bottom. Thus, initially, a priority queue (PQ)
organizes the current leaf nodes according to their local
importance. Then, the algorithm iteratively prunes the
leaves with the smallest local importance. Whenever a node
becomes a new leaf (due to the pruning of its children), it is
added to PQ. The algorithm terminates when only l nodes
remain in the tree. The tree is then returned as the size-l OS.
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In terms of time complexity, the algorithm performs Oðn)
delete operations in constant time, each potentially followed
by an update to the PQ. Since there are Oðn) elements in
PQ, the cost of each update operation is Oðlogn). Thus, the
overall cost of the algorithm is Oðnlogn). This is much lower
than the complexity of the DP algorithm, which gives the
optimal solution. This method will not always return
the optimal solution. In practice, however, it is very accurate
(see our experimental results in Section 8.2), due to the
property of ImðOS; tiÞ and ImðOS; ti:ajÞ, which gives
higher probability to nodes closer to the root to have a high
local importance. Lemma 2 (proved in [5]) gives an optimal-
ity condition for this algorithm when OSs are monotonic.

Lemma 2. If the nodes of an OS have monotonically decreasing
local importance scores to their distance from the root (i.e., the
score of each parent is not smaller than that of its children),
then the Bottom-Up Pruning Size-l Algorithm finds the opti-
mal size-l OS.

5.2 Update Top-Path-ll Algorithm

The second greedy heuristic initially computes for each
node ti of the OS, the average importance per node (denoted as
AIðpiÞ) in the path pi from the OS root to ti. This can be
done at the same time while generating the OS (or prelim-l
OS), which is given as input to the algorithm. The algorithm
then selects the path pi of nodes with the largest average
importance per node (denoted as AIðpiÞ), adds pi to the size-l
OS and removes the nodes of pi from the OS; the remaining
nodes in the OS now form a forest; each child of a node in pi
is the root of a tree. Due to the removal of pi, the values of
AIðpjÞ for each node tj which is a descendant of any node
in pi are updated. The process of selecting the path with the
highest AIðpiÞ, adding it to the size-l OS, removing it from
the OS, and revising any affected AIðpjÞ’s is repeated on the
resulting forest as long as less than l nodes have been
selected so far. If less than jpij nodes are needed to complete
the size-l OS then only the top nodes of the path are added
to the size-l OS (because only these nodes are connected to
the current size-l OS). Note that each time a path is selected,
it is guaranteed to be connected with the previously selected
paths (as the root of the selected path should be a child of a
previously selected path), therefore the selected paths will
form a valid size-l OS. The complexity of the algorithm can
be as high as Oðnl), where n is the size of the complete OS,
as at each step the algorithm may choose only one node
which causes the update of Oðn) paths. In terms of approxi-
mation quality, this algorithm not always returns the opti-
mal solution; however, empirically, this method gives better
results than Bottom-Up Pruning.

6 PRELIM-l PREPROCESSING ALGORITHMS

Instead of operating on the complete OS, which may be
expensive to generate and search, any of our algorithms
can work on a smaller OS, which hopefully includes a
good size-l OS. We denote such a preliminary partial OS
as prelim-l OS (with size j where l � j � jOSj). In this
case, DP is not expected to return the optimal result,
unless the prelim-l OS is guaranteed to include it. Deter-
mining a prelim-l OS that includes the optimal size-l OS
can be very expensive, therefore we propose a heuristic,

which produces a prelim-l OS that includes at least the l
nodes of the complete OS with the largest local impor-
tance (denoted as top-l set). Using avoidance conditions,
statistics that summarize the range of local importance of
every tuple in each relation and indexes we can infer
upper bounds for the local importance of tuples and
thus safely predict whether a candidate path can poten-
tially produce useful tuples.

The algorithm for generating prelim-l OSðtÞs, is
described in detail in [5]. Prelim-l OSðaÞs can be generated
by adapting this algorithm. The difference is that when add-
ing tuples to the prelim-l OSðaÞ (using the prelim-l OSðtÞ
algorithms), the tuples are decomposed to attribute-value
pairs and the local importance of each attribute (rather the
local importance of the tuple node) are added to the OS. In
addition, we introduce an additional avoidance condition that
avoids adding leaf attributes (e.g., non Naming attributes)
on the prelim-l OSðaÞ if their local importance is less than
the largest l importances found so far.

The Prelim-l OS generation algorithms need up to n I/O
accesses in the worst case, where n is the amount of tuples
in the complete OS. In terms of approximation, if monoto-
nicity holds on the tuples of the corresponding OS, then the
corresponding prelim-l OS will include the optimal size-l
OS. Note that tiðaÞ trees are always monotonic, since the
local importance of the root Naming attribute (i.e., AN ) is
always greater than the local importance of the leaf attribute
nodes (i.e., AG and AC).

7 SELECTING AN EFFECTIVE VALUE OF ll

So far, we have assumed that parameter l, which limits the
size of an OS summary is given by the user. However, in
practice, it could be too hard for a user to provide an appro-
priate value for l. In this section, we analyze the effect of l
on the quality of a size-l OS and propose a mechanism for
its automated selection.

Recall that the properties of a good size-l OSs are contra-
dictory; the summary should be small in size and at the
same time contain many important nodes. A larger size-l
OS is preferable only if it includes significantly many more
important nodes compared to a smaller summary of the
same OS. We propose a technique that selects an effective l-
value for a particular OS, which we denote as best l, from a
given range L of l-values. The range L for a particular GDS

can be obtained with the help of user evaluators (or can be
set by a database expert). In this work, we asked human
evaluators to suggest appropriate ranges L for all GDSs and
set L to be the average of the proposed ranges (see Sec-
tion 8.1.2 for more details). We denote as LðtÞ and LðaÞ the
ranges of l for OSðtÞs and OSðaÞs, respectively. For instance,
the proposed LðtÞ and LðaÞ for DBLP Author are [3..7] and
[5..12] and for TPC-H Customer they are [3..7] and [11..17],
respectively (see also Table 2).

We propose to calculate a score for each size-l OS,
denoted as Scl, for all values of l in L. The value of l that
results in the maximum Scl is considered to be the best
l. The best l should consider the local importance of the
included nodes and additional nodes should only
be included if they will significantly contribute with their
large importance. A measure that satisfies these criteria is
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the average of the local importance of the nodes of a size-l
OS. Hence, Scl can be calculated by

Scl ¼
ImðSÞ
l

: (8)

For example, considering the DBLP database, LðaÞ ¼
[5..12] and the fraction of the Faloutsos size-l OSðaÞ (of
Fig. 4), l ¼ 8 has Sc8 ¼ 51:2, which is the maximum among
all Scls. Therefore 8 is the recommended value of l for
this summary. Table 1 illustrates the scores of all values of l
in LðaÞ.

A simple approach of calculating the best l is to deter-
mine all size-l OSs for the range L in order to calculate their
Scl score. For this purpose, we can easily adapt size-l OS
determination algorithms and compute incrementally
(rather than independently) the summaries for the whole
range of l-values in L. Let lmin and lmax be the minimum
and maximum values in L. The DP algorithm can directly
be applied using lmax; upon reaching the root of the tree, the
best combinations for all values of l in L are compared in
order to select the one with the maximum score (and the
corresponding value of l). For the Bottom-Up Pruning algo-
rithm, we prune nodes from the OS until lmin nodes remain
in the size-l OS, whereas for the Update Top-Path-l algo-
rithm we append nodes on the size-l OS until we get lmax
nodes. The class of the time bounds for finding the best l
remains the same as determining the size-l OS. The cost of
DP is Oðnl2maxÞ, while the two heuristics require time
Oððn� lminÞlogn) instead of Oððn� lÞlogn) and Oðlmaxn)
instead of OðlnÞ; respectively.

8 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the proposed
size-l OS concept and algorithms. We evaluate both com-
plete and prelim-l OSs on both size-l OSðtÞs and size-l
OSðaÞs. Firstly, we thoroughly investigate the effectiveness
and usability of the proposed size-l OSs and the effective-
ness of the best l with the help of human evaluators. Then,
we investigate the approximation quality of the size-l OSs
produced by the greedy heuristics against to that of the cor-
responding optimal OSs. Finally, we comparatively investi-
gate the efficiency of the proposed algorithms.

We used two databases: DBLP and TPC-H (with scale
factor 1). The two databases have 2,959,511 and 8,661,245
tuples, occupying 513MB and 1.1GB on the disk, respec-
tively. We used ObjectRank (global) [15] and ValueRank
[17] to calculate the global importance for the tuples of the
DBLP and TPC-H databases respectively. We investigate
various settings of their parameters that have been studied
in [15] and [17]; namely, two GAs: (1) the GA1s (default) (see
Appendix of [5]) whereas (2) the GA2 for the DBLP has com-
mon transfer rates (0.3) for all edges and for the TPC-H
neglects values (i.e., becomes an ObjectRank GA) and three
values of d: d1 ¼ 0:85 (default), d2 ¼ 0:10 and d3 ¼ 0:99. We
use Equations (1) and (2) to calculate affinity. For the experi-
ments, we used Java, MySQL, cold cache and a PC with an
AMD Phenom 9,650 2.3 GHz (Quad-Core) processor and
4GB of memory.

8.1 Effectiveness

8.1.1 Usability of Size-OSðtÞs and Size-l OSðaÞs
We used human evaluators to measure effectiveness. First,
we familiarized them with the concepts of OSs in general
and size-l OSs in particular. Specifically, we explained that
a good size-l OS should be a stand-alone and meaningful
synopsis of the most important information about the par-
ticular DS. Then, we provided them with OSs and asked
them to size-l them for l ¼ 5, 10, 15, 20, 25, 30. None of our
evaluators were involved in this paper. We measured the
effectiveness of our approach as the average percentage of
the nodes that exist in both the evaluators’ size-l OSs and
the computed size-l OS by our methods. This measure cor-
responds to recall and precision at the same time, as both the
OSs compared have a common size.

Since the DBLP database includes data about real people
and their papers, we asked the DSs themselves (i.e., eleven
authors listed in DBLP) to suggest their own Author and
Paper size-l OSðtÞs and size-l OSðaÞs. The rationale of this
evaluation is that the DSs themselves have the best knowl-
edge of their work and can therefore provide accurate sum-
maries. For TPC-H, we presented 16 random OSs to eight
evaluators and asked them to size-l them. The evaluators
were professors and researchers from our Universities. In
addition, for each OS and tuple, a set of descriptive details
and statistics was also provided. For instance for a cus-
tomer, the total number, size and value of orders and the
corresponding minimum, median and maximum values of
all customers were provided. The provision of such details
gave a better knowledge of the database to the evaluators.
The detailed results of this evaluation are omitted due to

TABLE 1
Calculation of the Scl’s (and Best l’s)

TABLE 2
Effectiveness of Best l

1034 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 4, APRIL 2014



space constraints. [5] includes all results for size-OSðtÞs. In
general, the trends are similar between size-OSðtÞs and size-
l OSðaÞs, with accuracy ranging between 60 and 90 percent
and the size-l OSðaÞs sometimes being significantly more
accurate than size-OSðtÞs.

In this paper, we also conducted a comparative study of
the usability of size-l OSðtÞs and size-l OSðaÞs that verifies
users’ preference for size-l OSðaÞs. Usability is the ease of
use and learnability of a human-made object; i.e., how effi-
cient it is to use (e.g., whether it takes less time to accom-
plish a particular task), how easy it is to learn and whether
it is more satisfying to use.3 More precisely, for a given OS,
we measured the ease of use of both size-l OSðtÞs and size-l
OSðaÞs through a usability test. We used the same evalua-
tors and OSs as before for the respective databases. We pre-
sented to them the two versions of size-l OSs in a
randomized order to avoid any bias. We also presented
size-l OSs in plain layout and style as to limit evaluators
focus only on the content (rather than the presentation; as
preliminary evaluation showed that presentation affected
significantly evaluators’ judgment). Then, we gave them
four tasks to complete for each OS and asked them to score
(on a scale of 1 to 10) the usability of the two approaches
when completing these tasks. Namely, to score them consid-
ering which approach takes less time to accomplish each
task, is easier to learn and more satisfying to use.

The first task (T1) was to score the general use of the size-
l OSs against their objectives (i.e., they should be short,
stand-alone and meaningful synopsis of the most important
information about the particular DS). The rest of these tasks
were to extract information about the DSs that appears in
both size-l OSs. For instance, for the Author GDS in DBLP
database, task 2 (T2) was to determine a particular close col-
laborator of the DS that appears in both size-l OSs (e.g.,
whether Timos Sellis is a collaborator of Christos Faloutsos),
task 3 (T3) to extract the affiliation (e.g., the university that
Christos Faloutsos works for) task 4 (T4) the research inter-
ests of the DS. Similar tasks were used for the remaining
GDSs (i.e., Paper in DBLP and Customer, Supplier in TPC-
H). We selected the best values of l, as indicated by the
human evaluators.

Fig. 7 averages evaluators’ usability scores of the two
methods per GDS and per task. The results show that
evaluators favored significantly size-l OSðaÞs over size-l
OSðtÞs for all GDSs and tasks. More precisely, the percent

difference of their usability scores ranges from 36 to
70 percent. This verifies that size-l OSðaÞs are more
friendly to users because they avoid unnecessary inclu-
sion of all attributes of each selected tuple.

8.1.2 Effectiveness of Best l

In the next experiment, we compare the best l value
(denoted by lpred) which we produced using the methodol-
ogy of Section 7 against the l our evaluators proposed for
each OS (denoted by lact). For the purpose of this evalua-
tion, we used the same evaluators and OSs as before.
Firstly, we emphasized to our evaluators the contradicting
properties of a good size-l OS, namely that it should be
small in size and at the same time contain many impor-
tant nodes. Then, we asked them to suggest an lact value
for the particular OSs. Again, we presented OSs in plain
layout and style, as preliminary evaluation revealed that
presentation affected significantly evaluators’ judgment
on proposing lact. During this evaluation task, we also
asked evaluators to propose for each OS a range L to
select l from and we used that range for selecting the lpred
automatically (as discussed in Section 7).

Table 2 shows the rounded average of the lacts (and
respective Ls, i.e., Ls’ lmin and lmax rounded averages,
where lmax and lmin are the maximum and minimum l val-
ues in L, respectively) suggested by our evaluators and
the average of the effectiveness of our computed lpred for
the given OSs per GDS. For each OS, we measure the
effectiveness of lpred as the percent difference between the
lpred and evaluators’ lact normalized in the range L, i.e.,
100 � ½1� jlpred�lactjlmax�lmin � (the denominator is always 	 1 since
we assume that lmax > lmin as otherwise this technique is
meaningless). Our approach gives good results with over-
all average 74.5 percent.

8.1.3 Comparative Evaluation

According to our knowledge there is not any other existing
work directly relevant to size-l OSs, so we can compare our
results with. Nevertheless, we have attempted a qualitative
comparison with the most related previous work.

Pr�ecis. Pr�ecis queries share some similarity with size-l
OSs as they also summarize information. The main differ-
ence is that we summarize the context around a single tuple
(or attribute-value) which corresponds to a data subject;
whereas a pr�ecis query generates a subset (summary) of the
whole database based on the results of a keyword query
(which may be a network of multiple tuples; Example 3). To
verify this difference in practice, we conducted a compara-
tive evaluation of the usability of pr�ecis and size-l OSs.
More specifically, we asked our evaluators to compare the
usability of size-l OSs and pr�ecis when trying to obtain a
stand-alone and meaningful synopsis of the most important
information about a particular DS (which is the objective of
this work). For this purpose, we produced pr�ecis results
containing the most important nodes using the same scoring
values as in size-l OSs (to make a fair comparison). We used
a size proportional to l and the amount of OSs, e.g., l ¼ 10
and jOSj ¼ 3 (i.e., for instance for 3 Authors) then the size of
pr�ecis will be 30 tuples. We experimented for various sizes
of l and jOSj. As anticipated the evaluation verified users’3. www.wikipedia.org/wiki/Usability.

Fig. 7. Usability of Size-l OSðaÞs and Size-l OSðtÞs.
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significant preference for size-l OSs and thus we omit fur-
ther details. The main justification for the preference of the
evaluators was that it was very difficult to determine from
pr�ecis results the association of additional information with
the DSs. For instance, it was hard to determine the author of
a particular paper (as they had to do it themselves manually
through foreign keys). Even when jOSj ¼ 1, it was difficult
to determine associations, e.g., the association of a confer-
ence with an author.

8.2 Approximation Quality

We now compare the importance of the size-l OSs produced
by the greedy methods against the optimal ones. More pre-
cisely, the results of Fig. 8 represent the approximation
quality, namely the ratio of the importance of the computed
size-l OS against the importance of the optimal size-l OS
(computed by running DP on the complete OS). We present
the average results for 10 random OSs per GDS. The average
size (i.e., the amount of nodes) of OSs is also indicated
(denoted as (jOSj)).

Fig. 8 illustrates some characteristic results of our study.
The Update Top-Path-l is always better than the Bottom-Up
Pruning algorithm on both size-l OSðtÞs and size-l OSðaÞs.
In general, the superiority of Update Top-Path-l over
Bottom-Up Pruning is up to 14 percent on both types of
size-l OSs. The evaluation also reveals that top-l prelim-l
OSs have very low approximation quality loss. They have
no impact on the Bottom-Up algorithm and only up to 4 per-
cent on the Update Top-Path-l algorithm. The results also
reveal that our algorithms achieve better approximation
quality on size-l OSðaÞs than on size-l OSðtÞs and this is
because monotonicity is observed more frequently on
OSðaÞs nodes. Recall that in OSðaÞs, AG and AC nodes
always have less local importance scores than the

corresponding parent node AN , since they always have less
attribute affinity and common global importance. Another
observation is that the contents of the GDS and the values of
the local importance scores also have a significant impact.
For instance, for Paper OSs all methods achieved 100 per-
cent quality. This is because the monotonicity property
holds (Lemma 2); the Paper GDS is Paper! (Author, Paper-
CitedBy, PaperCites, Year ! (Conference)) and the local
importance of Conferences is always smaller than those of
the corresponding Years.

8.3 Efficiency

We compare the run-time performance of our algorithms.
We used the same OSs as in Section 8.2 (i.e., the same 10
OSs per GDS). Figs. 9, 10, 11, and 12 show the costs of our
algorithms for computing size-l OSs, excluding the time
required to generate the OS where each algorithm operates
on. Note also that the y-axes (time) in some graphs are split
to two parts; one linear (bottom) and one exponential (top)
in order to show how the expensive DP scales and at the
same time keep the differences between the other methods
visible.

Fig. 9 shows the costs of our algorithms for computing
size-l OSðtÞs and size-l OSðaÞs from OSs of two characteris-
tic GDSs with various sizes and using a range of l values.
The average sizes of the OSs on which the algorithms oper-
ate are indicated in brackets for each GDS. From the average

sizes, we can also compare the difference between jOSðtÞj
and jOSðaÞj (e.g., for the DBLP Author OSs, the average

jOSðtÞj and jOSðaÞj correspond to 1,116 and 1,584 tuple and
attribute nodes respectively). Figs. 10a and 10b show scal-
ability for Author OSs of different sizes, after fixing l ¼ 10
(analogous results were obtained from all GDSs and thus we

Fig. 8. Approximation quality on DBLP and TPC-H. Fig. 9. Efficiency on DBLP and TPC-H.
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omit them). Each value on the x-axis represents an OS size
(and the corresponding prelim-10 OS size). Comparing
these numbers, we can get an indication of prelim-l OSs sav-
ings; e.g., the OSðtÞ with size 1,309 has a prelim-10 OSðtÞ
size 157 (i.e., 11 percent of the size of the complete OS).
Again, we can compare the difference between jOSðtÞj and
jOSðaÞj, e.g., the OSðtÞ with size 1,309 corresponds to an
OSðaÞwith size 1,887.

As expected, both the OS size and l negatively affect the
cost. We also observe that since size-l OSðtÞs and size-l
OSðaÞs are computed from initial OSs of different sizes,
where jOSðtÞj < jOSðaÞj, the cost of computing a size-l
OSðaÞ is higher compared to computing the corresponding
size-l OSðtÞ for the same DS. Bottom-Up Pruning is consis-
tently faster than Update Top-Path-l, as it requires fewer
operations. An interesting observation is that Bottom-Up
Pruning on the complete OS becomes faster as l increases,
because n-l drops and fewer de-heaping operations are
needed. The cost of the DP algorithm becomes too high for
moderate to large OSs and values of l. For instance, the DP
takes in average 70 sec. for the Author size-50 OSðaÞs deter-
mination (i.e., up to 150 times slower than counterpart heu-
ristics). Evidently, this is still a very slow response for
keyword search queries where inpatient users would expect
fast responses. Fig. 11 compares the new version of the DP
algorithm against the version proposed in [5]. Note that the
the DP[5] does not scale well and that we had to terminate
the algorithm after 30 min. of running.

Figs. 12a and 12b break down the cost to OS generation
(bottom of the bar) and size-l computation (top of the bar)

for each method on Supplier OSs (that have the largest sizes
among all tested OSs). We investigated two approaches for
generating the OSs; the first employs an in-memory data-
graph and the second computes the OS directly from the
database. The OSs are generated much faster using the data
graph; thus, we present only the data-graph based results.
For example, to generate a Supplier OS only 0.2 sec. are
required using the data-graph, compared to 12.9 sec.
directly from the database. The DBLP and TPC-H data-
graphs take only 17 sec. and 128 sec. to generate and occupy
150 MB and 500 MB, respectively. More precisely, our data-
graph nodes correspond to the database tuples and edges to
tuples relationships (through their primary and foreign
keys). Note that the data-graph is only an index and does
not contain actual data as nodes capture only keys and
global importance. The figures also show the average sizes
of the complete OSs (1,341) and the prelim-l OSs (134 and
259 for l ¼ 10 and l ¼ 50, respectively). The prelim-l OS gen-
eration is always faster than that of the complete OS; thus,
prelim-l OSs further reduce the time required by our algo-
rithms. Bottom-Up Pruning becomes on average up to
5.7 times faster whereas the Update Top-Path-l is up to
4.1 times. Note that the size of the database does not impact
the OS generation time, because hash-maps are used to
look-up the required nodes of an OS; we omit experimental
results, due to space constraints.

9 CONCLUSION AND FUTURE WORK

In this paper, we proposed and studied the effectiveness of
a new concept; the size-l OS targets the synoptic and
stand-alone presentation of a large OS. More precisely, we
proposed two types of size-l OSs, i.e., size-l OSðtÞs and
size-l OSðaÞs. Then, we investigated the effective and effi-
cient generation of size-l OSs. We proposed a dynamic pro-
gramming algorithm and two efficient greedy heuristics
for producing size-l OSs. We also introduced a technique
for the automated selection of an appropriate value for l.
Finally, a systematic experimental evaluation conducted
on the DBLP and TPC-H databases verifies the effective-
ness, approximation quality and efficiency of our techni-
ques. A direction of future work concerns the further
exploration of algorithms using hashing and reachability
indexing techniques [28]. Another challenging problem is
the combined size-l and top-k ranking of OSs.

Fig. 10. Efficiency (varying OS size).

Fig. 11. Efficiency of DP algorithms.

Fig. 12. Efficiency (cost breakdown).
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