
Object summaries for keyword search

Georgios J. Fakas*,‡ and Zhi Cai†,§

*Department of Information Technology, Uppsala University, Sweden
†Beijing University of Technology, P. R. China

‡georgios.fakas@it.uu.se
§
caiz@bjut.edu.cn

Accepted 20 September 2016; Published 29 June 2017

The abundance and ubiquity of graphs (e.g., semantic knowledge graphs, such as Google's knowledge graph, DBpedia; online
social networks such as Googleþ, Facebook; bibliographic graphs such as DBLP, etc.) necessitates the effective and efficient search
over them. Thus, we propose a novel keyword search paradigm, where the result of a search is an Object Summary (OS). More
precisely, given a set of keywords that can identify a Data Subject (DS), our paradigm produces a set of OSs as results. An OS is a
tree structure rooted at the DS node (i.e., a node containing the keywords) with surrounding nodes that summarize all data held on
the graph about the DS. An OS can potentially be very large in size and therefore unfriendly for users who wish to view synoptic
information about the data subject. Thus, we investigate the effective and efficient retrieval of concise and informative OS snippets
(denoted as size-l OSs). A size-l OS is a partial OS containing l nodes such that the summation of their importance scores results in
the maximum possible total score. However, the set of nodes that maximize the total importance score may result in an uninfor-
mative size-l OSs, as very important nodes may be repeated in it, dominating other representative information. In view of this
limitation, we investigate the effective and efficient generation of two novel types of OS snippets, i.e., diverse and proportional size-l
OSs, denoted as DSize-l and PSize-l OSs. Namely, besides the importance of each node, we also consider its pairwise relevance
(similarity) to the other nodes in the OS and the snippet. We conduct an extensive evaluation on two real graphs (DBLP and Googleþ).
We verify effectiveness by collecting user feedback, e.g., by asking DBLP authors (i.e., the DSs themselves) to evaluate our results. In
addition, we verify the efficiency of our algorithms and evaluate quality of the snippets that they produce.

Keywords: Diversity; proportionality; snippets; summaries.

1. Introduction

Keyword search on the web (W-KwS) has dominated our lives,
as it facilitates users to find effectively information using only
keywords. For instance, the result for query Q1 ¼ \Faloutsos"
consists of a set of links to web pages containing the keyword(s)
together with their respective snippets. Snippets are short
fragments of text extracted from the search results (e.g., web
pages); they significantly enhance the usability of search results
as they provide an intuition about which results are worth
accessing and which can be ignored. Furthermore, snippets may
provide the complete answer to the searcher's actual informa-
tion needs, thus preventing the need to retrieve the actual result.1

The keyword search paradigm has also been introduced in
relational databases (R-KwS). (e.g., Ref. 2). According to the
R-KwS paradigm, we search for networks of tuples con-
nected via foreign key links that collectively contain the
keywords. For example, the query Q2 ¼\Faloutsos"
+\Agrawal" over the DBLP database returns tuples Faloutsos
and Agrawal from the Author table and their associations
through co-authored papers (Example 2). However, the

R-KwS paradigm may not be very effective when searching
information about a particular data subject (DS) (e.g.,
Faloutsos and his papers, co-authors, etc.; Example 3). A DS
is an entity (e.g., an individual, paper, product, etc.) which
has its identity in a tuple which is the result (i.e., subject) of
the keyword search. R-KwS only returns tuples containing
the keywords (in this case only Faloutsos Author tuples), and
hence fails to address search for the context of most important
tuples around a central tuple (i.e., a DS).

Example 1. Q1 \Faloutsos" using a W-KwS (Google)

Christos Faloutsos
SCS CSD Professor's affiliatons, research, projects, publications and
teaching.
www.cs.cmu.edu/�christos/ - 9k
Michalis Faloutsos
The Homepage of Michalis Faloutsos . . . Interesting and Miscallaneous
Links � Fun pictures � Other Faloutsos on the web; The Teach-To-Learn
Initiative:
www.cs.ucr.edu/�michalis/ - 5k

(Continued)
(Continued)

ENCYCLOPEDIA WITH SEMANTIC COMPUTING AND ROBOTIC INTELLIGENCE
Vol. 2, No. 2 (2018) 1750002 (20 pages)
© World Scientific Publishing Company
DOI: 10.1142/S2529737617500022

1750002-1

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

http://dx.doi.org/10.1142/S2529737617500022

Petros Faloutsos
Courses � Press Coverage � Publications � Research Highlights � Awards �
MAGIX Lab � Curriculum Vitae � Family � Other Faloutsos on Web.
www.cs.ucla.edu/�pfal/ - 4k
. . .

Example 2. Q2 using an R-KwS

Author: Christos Faloutsos, Paper: Efficient similarity search in
sequence databases, Author: Rakesh Agrawal.

Author: Christos Faloutsos, Paper: Method for high-dimensionality
indexing in a multi-media database, Author: Rakesh Agrawal.

Author: Christos Faloutsos, Paper: Quest: A project on database mining,
Author: Rakesh Agrawal.

Example 3. Q1 using an R-KwS

Author: Christos Faloutsos
Author: Michalis Faloutsos
Author: Petros Faloutsos

Example 4. The OS for Michalis Faloutsos

Author: Michalis Faloutsos

Paper: On Power-law Relationalships of the Internet Topology.

Conference: SIGCOMM. Year: 1999.

Co-Author(s): Christos Faloutsos, Petros Faloutsos.

Cites: Building Shared. . ., Cited by: The Structure. . .,

Paper: BLINC: Multilevel Traffic Classification in the Dark.

Conference: ACM SIGCOMM Computer Comm. Review
Year:2005.

Co-Author(s): T. Karagiannis, K. Papagiannaki.

Cites: A Parametrizable methodology. . ., Cited by: P4P: Provider. . .,

Paper: Transport Layer Identification of P2P Traffic.

Conference: SIGCOMM. Year:2004.

Co-Author(s): T. Karagiannis, A. Broido.

Cites: Their Share: Diversity. . ., Cited by: Internet Traffic.

. . .

. . .

Example 5. The size-15 OS for Michalis Faloutsos

Author: Michalis Faloutsos

Paper: On Power-law Relationalships of the Internet Topology.

Co-Author: Christos Faloutsos,. . .

Paper: Power Laws and the AS-Level Internet Topology.
Co-Author: Christos Faloutsos,. . .

Paper: ACM SIGCOMM` 99. Co-Author: Christos Faloutsos,. . .

Paper: Information survival thr.... Co-Author: Christos Faloutsos,. . .

Paper: TheConnectivity and Fault. . . Co-Author:Christos Faloutsos,. . .

Paper: BGP-lens: Patterns andAn. . . Co-Author:Christos Faloutsos,. . .

Paper: The eBayGraph:HowDo.... Co-Author:Christos Faloutsos,. . .

Example 6. The DSize-15 OS for Michalis Faloutsos

Author: Michalis Faloutsos

Paper: On Power-law Relationalships of the Internet Topology.

Conference: SIGCOMM. Year: 1999.

Co-Author: Christos Faloutsos,....

Paper: Information Survival Threshold in Sensor and P2P Networks.

Co-Author: S. Madden, ..., Conference: INFOCOM.

Paper: Power Laws and the AS-Level Internet Topology.

Conference: IEEE/ACM Tr. Netw. Year: 2003.

Co-Author: Christos Faloutsos,..

Paper: Network Monitoring Using Traffic Dispersion Graphs.

Co-Author: M. Mitzenmacher, ...Conference: SIGCOMM.

Example 7. The PSize-15 OS for Michalis Faloutsos

Author: Michalis Faloutsos

Paper: On Power-law Relationalships of the Internet Topology.

Conference: SIGCOMM. Year: 1999.

Co-Author: Christos Faloutsos,....

Paper: Denial of Service Attacks at the MAC Layer. . .

Co-Author: S. Krishnamurthy,. . ., Conference: MILCOM.

Paper: Power Laws and the AS-Level Internet Topology.

Conference: IEEE/ACM Tr. Netw.

Co-Author: Christos Faloutsos,..

Paper: Reducing Large Internet Topologies for Faster Simulations

Co-Author: S. Krishnamurthy, L. Cui,. . . Conference:
NETWORKING.

In view of this, in Refs. 3 and 4 the concept of object
summary (OS) was introduced; an OS summarizes all data
held in a database about a particular DS, searched by some
keyword(s). More precisely, an OS is a tree with the tuple
nDS containing the keywords (e.g., Author tuple Faloutsos)
as the root node and its neighboring tuples, containing
additional information (e.g., his papers, co-authors, etc.), as
child or descendant nodes. In a nutshell, a tuple is included in
the OS if it is of high affinity (based on link properties in the
tuple network graph of the database) and it is connected to
nDS via a short path. For instance, the result for q is a set of
OSs: one for each Faloutsos brother. Example 4 illustrates the
OS for Michalis Faloutsos. Note that the OS paradigm is in
more analogy to W-KwS, compared to R-KwS. For instance,
Example 4 resembles a web page (as it includes compre-
hensive information about the DS). Therefore, for the non-
technical users with experience only on web keyword search,
the OS paradigm will be friendlier and also closer to their
expectations. In general, an OS is a concise summary of the
context around any pivot database tuple or graph node,
finding application in (interactive) data exploration, schema
extraction, etc. Another application of this summarization
concept is on semantic knowledge graphs.5,6

(Continued)

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-2

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

In Refs. 7–9, OS snippets were proposed (denoted as size-
l OSs). Size-l OSs are composed of only l important nodes so
that (1) the summation of their scores is maximized and (2)
all l nodes are connected to the OS root (i.e., nDS). Example 5
illustrates the size-l OS for M. Faloutsos with l ¼ 15 on the
DBLP database. According to Ref. 7, a size-l OS should be a
standalone sub-graph of the complete OS so that the user can
comprehend it without any additional information. For this
reason, the l nodes should form a connected graph that
includes the root of the OS.

However, this selection criterion (i.e., maximizing im-
portance score) can render such snippets ineffective. For
instance, in Example 5, the co-authorship of Michalis with
Christos Faloutsos, who is a very important author mono-
polizes the snippet with papers co-authored only with
Christos. Thus, we argue that the diversity of constituent
nodes will improve the snippet's effectiveness. In addition,
we argue that frequent appearances of nodes in an OS should
also be proportionally represented in an effective snippet.

Hence, we also propose two novel snippets, namely diverse
and proportional size-l OSs denoted as DSize-l OS and PSize-l
OS, respectively. More precisely, in a DSize-l OS, we favor
diversity by penalizing repetitions of relevant nodes. For in-
stance, the DSize-l OS of Example 6 includes C. Faloutsos
only twice, allowing the appearance of other important co-
authors as well. In a PSize-l OS, we favor proportionality, i.e.,
a frequent relevant node should be analogously represented,
facilitating diversity at the same time. Similarly, the PSize-l OS
of Example 7 includes also frequent co-authors S. Krishna-
murthy and L. Cui who do not appear at all in the DSize-l OS.
To compute them, we calculate a combined score per node,
which integrates (1) importance, (2) affinity to the data subject
node nDS and (3) diversity or proportionality.

For the diversity and proportionality scores calculation,
we employ two types of pairwise relevance: Similarity
(denoted also as sim) and Equality (denoted as equi). More
precisely, sim is the textual similarity between nodes (e.g.,
Jaccard similarity); e.g., two papers with common keywords
are similar. Note that textual similarity on Author's names
makes little sense here; e.g., two authors with a common
surname are still two different persons. Thus, we also use equi
as a binary relevance function, i.e., two OS nodes that cor-
respond to the same graph node (e.g., the same Author
appearing many times in an OS) have equi-relevance 1,
otherwise their equi-relevance is 0. We say that a snippet is an
equi size-l OS if it considers only equi relevance (e.g., an equi
DSize-l); we say that a snippet is a sim size-l OS if it con-
siders both sim and equi relevance (e.g., sim DSize-l).

The efficient generation of DSize-l or PSize-l OSs is a
challenging problem since information about the repetitions
and frequencies of nodes is required and incremental com-
putation is not possible (as opposed to the original size-l OS
computation problem7).

We conducted an extensive experimental study on the
DBLP bibliographic and Googleþ social network datasets.

We verify effectiveness by collecting user feedback, e.g., by
asking DBLP authors (i.e., the DSs themselves) to evaluate
our size-l OSs. The users suggested that the results produced
by our method are very close to their expectations and that
DSize-l and PSize-l are more usable than the respective size-ls
OSs, which disregard diversity. In addition, we investigated in
detail and verified the efficiency and approximation quality of
our algorithms.

2. Object Summaries

According to the keyword search paradigm of Ref. 4, an
object summary (OS) is generated for each node (tuple) nDS

found in a graph (database) that contains the query keyword(s)
(e.g., \Michalis Faloutsos" node of Author relation in the
DBLP database). An OS is a tree having nDS as a root, the
nodes that link to nDS through foreign keys as its children,
the nodes that link to the children recursively as descendant
nodes. To construct an OS, the relation RDS (e.g., the Author
relation) that holds nDS and those that link to RDS via foreign
keys are used. First, a Data Subject Schema Graph GDS is
generated. Figure 2 illustrates the GDS for the Author relation
of the DBLP database, whose schema is shown in Fig. 1.
A GDS is a directed labeled tree with a fixed maximum depth
that has an RDS as a root node and captures the subset of the
schema surrounding RDS; any surrounding relations partici-
pating in loop or many to many relationships are replicated
accordingly. Examples of such replications are relations
PaperCitedBy, PaperCites and co-author on author GDS

(see Fig. 2). (User evaluation in Ref. 4 verified that the tree

Conference
(0.78)

Co-author
(0.82)

ConfYear
(0.83)

PaperCites
(0.77)

PaperCitedBy
(0.77)

Paper
(0.92)

Author
(1.00)

Fig. 2. The DBLP author GDS (affinity).

Paper AuthorConfYearConference

Fig. 1. The DBLP database schema.

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-3

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

format (achieved via such replications) increases significantly
friendliness and ease of use of OSs.)

In other words, a GDS is a \treelization" of the database
schema, where RDS becomes the root, RDS`s neighboring
relations become child nodes and so on. In order to generate
the OS, the relations from GDS, which have high affinity with
RDS are used. The affinity of a relation Ri to RDS can be
calculated by the formula:

af ðRiÞ ¼
X

j

mwj � mj � af ðRParentÞ; ð2:1Þ

where j ranges over a set of measures (m1;m2; . . . ;mn) and
their corresponding weights (mw1;mw2; . . . ;mwn), and
af ðRParentÞ is the affinity of Ri's parent to RDS. The measures'
scores range in [0, 1] and the corresponding weights sum to
1; thus, the affinity score of a node is monotonically non-
increasing with respect to the node's parent. More pre-
cisely, we use four measures: m1 considers the distance of
Ri to RDS, i.e., the shorter the distance the bigger the
affinity between the two relations. The remaining measures
consider the connectivity of Ri on both the database schema
and data-graph. m2 measures the relative cardinality, i.e.,
the average number of tuples of Ri that are connected with
each tuple in RParent whereas m3 measures their reverse
relative cardinality, i.e., the average number of tuples of
RParent that are connected with a tuple in Ri. m4 considers
the schema connectivity of Ri (i.e., the number of relations
it is connected to in the relation graph).

Given a threshold �, a subset of GDS can be produced that
includes only the relations of affinity at least � to RDS. The
OS for a tuple nDS in RDS is generated by traversing the
GDS starting from nDS (e.g., by joining nDS with the neigh-
boring relations of RDS; Algorithm 1). For instance, for
q=\Faloutsos", and for nDS=\Michalis Faloutsos" in the
Author RDS of the DBLP database, the OS presented in
Example 4 will be generated.

Every tuple vi in the database carries a global importance
weight giðviÞ, calculated using PageRank-inspired measures
such as ObjectRank10 and ValueRank.11 Due to the
\treelization" of the schema graph by GDS, multiple tuples in
an OS may correspond to the same tuple in the database. For
instance, the same co-author (e.g., Christos Faloutsos) may

appear multiple times (e.g., 12) in the OS of Michalis. For-
mally, for a node ni of an OS, we use function gðniÞ to denote
the corresponding tuple v in the database. Thus, for two OS
nodes ni and nj, we may have gðniÞ ¼ gðnjÞ ¼ v. We also
denote as frðvÞ (i.e., frðgðniÞÞ, or simply frðniÞ) the frequency
of tuple v in the given OS.

3. Size-l OSs

According to Ref. 7, given an OS and an integer l, a candidate
size-l OS is any subset of the OS composed of l nodes, such
that the l nodes form a tree rooted at nDS. In Ref. 7, we argue
that a good size-l OS should be a standalone and meaningful
synopsis of the most important and representative informa-
tion about the particular DS (so that users can understand it as
is, without any additional nodes). In particular, any interme-
diate nodes that connect nDS (e.g., M. Faloutsos) with other
important nodes (e.g., C. Faloutsos) in the size-l OS guar-
antee that the size-l remains standalone, since these con-
necting nodes (e.g., co-authored papers) include the
semantics of the associations. For instance, in Example 5, if
we exclude the paper \On Power-law. . ." but only include
the co-authors, we exclude the semantic association between
nDS and co-author(s), which in this case is their common
paper.

The holistic importance ImðSlÞ of any candidate size-l OS
Sl is defined as the sum of the local importance scores of its
nodes, i.e., ImðSlÞ ¼ P

ni2SlliðniÞ. The local importance of a
node ni is the affinity-weighted global importance of ni, i.e.,
liðniÞ ¼ af ðniÞ � giðniÞ. The affinity af ðniÞ of a node ni equals
the affinity of the relation where ni belongs (Eq. (2.1)); global
importance was defined in Sec. 2.

The generation of a size-l OS is a challenging task because
we need to select l nodes that are connected to nDS and at the
same time result in the maximum score. An optimal dynamic
programming algorithm (requiring Oðnl2Þ time where n is the
amount of nodes in the OS) and greedy algorithms were
proposed in Ref. 7.

3.1. Greedy algorithms

Since the DP algorithm does not scale well, in this section, we
investigate greedy heuristics that aim at producing a high-
quality size-l OS, not necessarily being the optimal.
A property that the algorithms exploit is that the local impor-
tance of tuples in the OS (i.e., ImðOS; tiÞ) usually decreases
with the node depth from the root tDS of the OS. Recall that
ImðOS; tiÞ is the product ImðtiÞ � Af ðtiÞ, where ImðtiÞ is the
global importance of tuple ti and Af ðtiÞ is the affinity of the
relation that ti belongs to. Af ðtiÞ monotonically decreases
with the depth of the tuple since Af ðRiÞ is a product of
its parent's affinity and Af ðRiÞ � 1 (cf. Eq. (2.1)). On the
other hand, the global importance for a particular tuple is to
some extent unpredictable. Therefore, even though the local

Algorithm 1. The OS Generation Algorithm

OS Generation (nDS, GDS)
1: enQueue(Q, nDS) Queue Q facilitates breadth first traversal
2: add nDS as the root of the OS
3: while !(isEmptyQueue(Q)) do
4: nj=deQueue(Q)
5: for each child relation Ri of R(nj) in GDS do
6: get Ri(nj)
7: for each tuple ni of Ri(nj) do
8: enQueue(Q, ni)
9: add ni on OS as child of nj

10: return OS

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-4

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

importance is not monotonically decreasing with the depth of
the tuple on the OS tree, it has higher probability to decrease
than to increase with depth. Hence, it is more probable
that tuples higher on the OS to have greater local import-
ance than lower tuples. Moreover, note that due to the non-
monotonicity of OSs, existing top-k techniques such as11–13

cannot be applied.

3.2. Bottom-up pruning size-l algorithm

This algorithm, given an initial OS (either a complete or a
prelim-l OS) iteratively prunes from the bottom of the tree the
n� l leaf nodes with the smallest ImðOS; tiÞ, where n is the
number of nodes in the complete OS. The rationale is that
since tuples need to be connected with the root and lower
tuples on the tree are expected to have lower importance, we
can start pruning from the bottom. A priority queue (PQ)
organizes the current leaf nodes according to their local im-
portance. Algorithm 2 shows a pseudocode of the algorithm
and Fig. 3 illustrates the steps.

More precisely, this algorithm firstly generates the initial
OS (line 1; e.g., the complete OS using Algorithm 1). The OS
Generation algorithm generates the initial size-l OS and also
the initial PQ (initially holding all leaves of the given OS).
Then, the algorithm iteratively prunes the leaves with the
smallest ImðOS; tiÞ. Whenever a new leaf is created (e.g.,
after pruning node 9 in Fig. 3, node 3 becomes a leaf), it is
added to PQ. The algorithm terminates when only l nodes
remain in the tree. The tree is then returned as the size-l OS.
In terms of time complexity, the algorithm performs O(n)
delete operations in constant time, each potentially followed
by an update to the PQ. Since there are O(n) elements in PQ,
the cost of each update operation is O(logn). Thus, the overall
cost of the algorithm is O(nlogn). This is much lower than
the complexity of the DP algorithm, which gives the optimal
solution.

On the other hand, this method will not always return the
optimal solution; e.g., the optimal size-5 OS should include
nodes 1, 5, 6, 12 and 14 instead of 1, 5, 6, 11 and 13
(Fig. 3(d)). In practice, it is very accurate (see our experi-
mental results in Sec. 8.2), due to the aforementioned

property of ImðOS; tiÞ, which gives higher probability to
nodes closer to the root to have a high local importance.

4. DSize-l and PSize-l Snippets

We propose two types of size-l OSs, namely diverse DSize-l
OSs and proportional PSize-l OSs, which extend the size-l
OS definition7 to capture diversity and proportionality, respectively.
Similarly to size-l OSs, both DSize-l OSs and PSize-l OSs
should be standalone sub-trees of the OS, composed of l
important and representative nodes only, so that the user can
understand them without any additional information. Thus,
the l nodes should form a connected graph that includes the
root of the OS (i.e., nDS). We argue that an effective DSize-l
(PSize-l) OS should gracefully combine diversity (propor-
tionality) and the local importance scores of constituent
nodes. Hence, we propose that for each OS node ni, we es-
timate a respective score for diversity, proportionality and local
importance, denoted by dvðniÞ; pqðniÞ and liðniÞ, respectively.
dvðniÞðpqðniÞÞ and liðniÞ are combined to a single score
dwðniÞðpwðniÞÞ for a DSize-l (PSize-l) OS, simply denoted by
wðniÞ when the context (i.e., diversity or proportionality) is
clear. The notations frequently used throughout this section
and in the rest of the paper are summarized in Table 1.

1

30

7

10

6

35
5

80
4

31
3

11
2

20

10

13
12

55
11

30
9

5
8

15

14

40
13

60

9

5
7

10
10

13
8

15
14

40
13

60

PQ

(a) The initial OS

7

10
3

11
10

13
8

15
14

40
13

60

PQ

1

30

7

10

6

35
5

80
4

31
3

11
2

20

10

13
12

55
11

30
8

15

14

40
13

60

(b) First leaf pruned out

1

30

6

35
5

80
4

31
2

20

12

55
11

30
8

15

14

40
13

60

8

15
4

31
14

40
13
60

PQ

(c) The size-10 OS

6

35
13

60

PQ

1

30

6

35
5

80

11

30

13

60

(d) The size-5 OS

Fig. 3. The Bottom-Up Pruning Size-l Algorithm: Size-l OSs and their
corresponding PQs (annotated with tuple ID and local importance).

Algorithm 2. The Bottom-Up Pruning Size-l Algorithm
Bottom-Up Pruning Size-l (l, tDS, GDS)

1: OS Generation(tDS, GDS) {g}enerates initial size-l (i.e., complete or
prelim-l) OS and initial PQ

2: while (|size-l OS| > l) do
3: ttem=deQueue(PQ) the smallest value from PQ
4: if!(hasSiblings(size-l OS, ttem))
5: enQueue(PQ, parent(size-l OS, ttem)) check whether after

gninurp:6 ttem, its parent becomes a leaf node
7: prune ttem from size-l OS
8: return size-l OS

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-5

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

Then, the objective is to select the l nodes that (1) include
nDS and form a connected subtree of the OS and (2) the sum
of their wð:Þ scores is maximized. Local importance (i.e.,
lið:Þ) can be calculated as in the original size-l OS problem
(i.e., by multiplying affinity with global importance7), thus
hereby we discuss only diversity and proportionality.

We investigate two relevance types among OS nodes,
namely similarity (denoted as sim) and equality (denoted as
equi). More precisely, we consider relevance among nodes
belonging to the same relation; thus, we classify each
GDS relation either as sim or equi. We can use a domain
expert to classify each relation in these types. When two
nodes belong to different relations, then they have relevance 0
(e.g., the similarity between a conference and a paper is al-
ways 0). For nodes belonging to the same sim relation, we use

Jaccard similarity (i.e., simðni; njÞ ¼ jni\njj
jni[njj; we treat ni and nj

as sets of words). We can use an expert to define which
attributes to compare per relation. For instance, Paper is a sim
relation (Author GDS, Fig. 2) and we define similarity be-
tween papers using their titles (e.g., \On Power-law rela-
tionships of the Internet Topology" versus \Power laws and
the AS-Level Internet topology"). (Note that Jaccard similarity
is symmetric (i.e., simðni; njÞ ¼ simðnj; niÞ) and the respective
distance (i.e., 1� simðni; njÞ) is a metric.) However, we ob-
serve that textual similarity cannot be applied on all relations
meaningfully. For instance, consider Authors; it is not mean-
ingful to define textual similarity between author names
\Christos Faloutsos" versus \Michalis Faloutsos". Thus, for
such cases (e.g., DBLP relations Author and ConfYear), we
consider equality relevance, where two different OS nodes may
either correspond to the same tuple (e.g., gðniÞ ¼ gðnjÞ ¼ vp)
or to two different tuples (e.g., gðniÞ 6¼ gðnjÞ). In the former
case, we have simðni; njÞ ¼ 1, whereas in the latter case, we
have simðni; njÞ ¼ 0. Note that in both relevance types, we
measure relevance between two nodes using the same notation,
i.e., simðni; njÞ (even for equi relations). Also note that sim
ðni; njÞ ¼ 1 indicates that the two nodes are equal even in the

case of sim relations; e.g., although Conference is a sim
relation, an author may have papers appearing in the same
conference more than once.

4.1. Diversity (DSize-l OSs)

We suggest that the l nodes should be diversified by pre-
venting the domination of very important nodes. For exam-
ple, in the Michalis Faloutsos OS, the co-authorship with the
very important author Christos Faloutsos dominates the
snippet and this renders the snippet not representative. A
natural criterion objective towards measuring diversity is to
maximize the sum of dissimilarities between nodes. Thus, for
a given graph node ni in a DSize-l DSl, we suggest to estimate
diversity as follows:

dvðniÞ ¼
1�

X
nj2DSl;ni 6¼nj

simðni; njÞ
l� 1

RðniÞ is sim relation

1� zðgðniÞÞ � 1
l� 1

RðniÞ is equi relation

8>>>><
>>>>:

;

ð4:1Þ
where RðniÞ is the relation ni belongs to, nj is any other node
in DSl and simðni; njÞ is the similarity between ni and nj.
When gðniÞ ¼ gðnjÞ (i.e., ni and nj correspond to the same
tuple), then simðni; njÞ ¼ 1 for both sim and equi relations.
For an equi relation, if gðniÞ 6¼ gðnjÞ then simðni; njÞ ¼ 0.
Recall also that, if ni and nj do not belong to the same
relations (i.e., RðniÞ 6¼ RðnjÞ), then simðni; njÞ ¼ 0. The
summation of similarities of ni to the rest of the nodes in
the snippet will give us the respective dvðniÞ score. For an
equi relation, that will be zðgðniÞÞ � 1, where zðgðniÞÞ is the
amount of times gðniÞ appears in the snippet (since for all
nodes nj such that gðniÞ ¼ gðnjÞ; simðni; njÞ ¼ 1). Dividing
by l� 1, we normalize dvðniÞ in the range [0,1].

Given a set of nodes, nj1; . . . ; njx, that have been added to
the DSize-l OS, we denote as dvðnijnj1; . . . ; njxÞ the diversity
score of an unselected node ni considering these added nodes.
For instance, the score dvðP1jP5Þ in Table 2 denotes the score
of P1 after the addition of P5 in the snippet. For short, when
the context is clear, we also denote as dvðnijnjxÞ the score of
ni given that njx has been appended as the last (i.e., xth) node
on the snippet. We also denote as dvðnij�Þ the maximum
diversity score a node ni can get, i.e., dvðnij�Þ ¼ 1; e.g., when
ni is the first to be added. This notation will be useful
when describing our greedy algorithms; where after each
node addition, the score of unselected nodes is affected
accordingly.

For equi nodes for short, we also denote as dv½z�ðgðniÞÞ the
diversity score of a graph node ni considering it appears for
the zth time in the snippet. For instance, in Table 3, dv½1�
indicates the score of a node assuming it appears for the first
time; where dv½1�ðniÞ ¼ 1 is the maximum diversity score
(which corresponds to dvðnij�Þ ¼ 1). As another example,
consider l ¼ 10 and that C. Faloutsos appears two times (i.e.,

Table 1. Notations for DSize-l and PSize-l OSs.

Notation Definition

giðviÞ The global importance of a graph node vi
liðniÞ The local importance of an OS node ni
frðviÞ The frequency a graph node vi appears in an OS
zðviÞ The amount of times that a graph node vi has been added

on the snippet
dvðniÞ The diversity score of an OS node ni
dwðniÞ The diversity weight score: liðniÞ � dvðniÞ
pqðniÞ The proportionality quotient of an OS node ni
pwðniÞ The proportional weight score: liðniÞ � pqðniÞ
wðniÞ A weight score that may represent either dwðniÞ or pwðniÞ

(when the context is clear)
apðniÞ The average wð:Þ score of nodes of path ni to root
ImðSlÞ The Importance score of a size-l Sl

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-6

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

z ¼ 2); dv½2� ¼ 1� 2�1
10�1 ¼ 8

9 ¼ 0:89 (Table 3). Note that this
score corresponds to the graph node gðniÞ; thus, both nodes
will have the same dvð:Þ, i.e., 0.89 (an alterative way would
be to score the first occurrence as 1 and the second as 0.78,
since 1þ 0:78 ¼ 0:89þ 0:89).

Our equation is inspired by (1) max-sum diversification
that maximizes the sum of the relevance and dissimilarity of a
set and by (2) the use of a mono-objective formulation,
which, similarly to our equation, combines relevance and
dissimilarity to a single value for each document.15 Note that,
in general, diversification approaches trade off (1) the simi-
larity of results with the given query and (2) the dissimilarity
among such results using a similarity measure (e.g., IR
techniques). For instance, given a query \Internet Topology",
papers \On Power-law relationships of the Internet
Topology" and \Power laws and the AS-Level Internet
topology" have some similarity to this query but they also
have some similarity among them; both types can be esti-
mated using a common IR measures such as Jaccard simi-
larity. This is not the case here, since we do not consider the
similarity of nodes to the query but a local importance score
in relation to nDS. Thus, local importance and similarity are
not meaningfully comparable. Note also that their respective
values may not be in the same range (e.g., local import-
ance may range in [0, 10] whereas dvð:Þ always ranges in
[0, 1]). Hence, unlike most diversification approaches, in

the combining function dwð:Þ (to be defined in Sec. 4.3)
we do not sum up local importance and dissimilarity, but
multiply them.

4.2. Proportionality (PSize-l OSs)

We observe that in an OS we often find equi graph nodes (i.e.,
database tuples) multiple times. For instance, in the Michalis
Faloutsos OS (see Table 3), we have 37 instances of S.
Krishnamurthy, 12 instances of C. Faloutsos, 18 papers in
INFOCOM, etc. We denote the frequency of a graph node vi
in an OS as frðviÞ (or simply by fr when the context is clear).
Graph nodes appear in an OS multiple times could sometimes
be comparatively weak in terms of importance, but still given
their frequency in the OS, they should be represented anal-
ogously in an effective snippet. Thus, we suggest that in a
PSize-l snippet, disregarding local importance (i.e., assuming
that all nodes have the same lið:Þ), we should include nodes in
proportion of their frequency. For example, if a graph node vi
appears 37 times in the total of 1,259 OS nodes, then vi
should ideally appear bl � 37=1; 259c times in the respective
PSize-l OS. (Note that this may not practically possible as in-
between nodes may also be required, i.e., the co-authored
papers in our example.)

Analogously, we observe that the topic of sim nodes may
appear multiple times; a node may be very similar to many

Table 2. Sim relevance of selected papers of Michalis Faloutsos.

Name lið:Þ
dv
ð:j�Þ

dw
ð:j�Þ

dv
ð:jP5Þ

dw
ð:jP5Þ

dv
ð:jP8Þ

dw
ð:jP8Þ

pq
ð:j�Þ

pw
ð:j�Þ

pq
ð:jP5Þ

pw
ð:jP5Þ

pq
ð:jP8Þ

pw
ð:jP8Þ

P1: Aggregated Multicast for Scalable QoS Mu.. 0.17 1.00 0.17 1.00 0.17 0.99 0.16 0.69 0.11 0.69 0.11 0.59 0.10
P2: Aggregated Multicast with Inter-Group Tr.. 0.18 1.00 0.18 1.00 0.18 0.99 0.18 0.56 0.10 0.56 0.10 0.48 0.09
P3: BGP-lens: Patterns and Anomalies in Inte.. 0.16 1.00 0.16 0.99 0.16 0.98 0.16 0.58 0.09 0.49 0.08 0.43 0.07
P4: Bounds for the On-line Multicast Problem.. 0.19 1.00 0.19 1.00 0.19 0.99 0.19 0.68 0.13 0.68 0.13 0.59 0.11
P5: On Power-law Relationships of the Intern.. 0.61 1.00 0.61 — — — — 1.15 0.71 — — — —

P6: Power Laws and the AS-Level Internet Top.. 0.19 1.00 0.19 0.93 0.17 0.92 0.17 1.15 0.21 0.49 0.09 0.46 0.08
P7: QoS-aware Multicast Routing for the Inte.. 0.18 1.00 0.18 0.99 0.18 0.96 0.18 1.15 0.21 0.99 0.18 0.69 0.13
P8: QoSMIC: Quality of Service Sensitive Mu.. 0.31 1.00 0.31 0.99 0.31 — — 0.93 0.29 0.79 0.24 — —

P9: Reducing Large Internet Topologies for F.. 0.27 1.00 0.27 0.98 0.26 0.97 0.26 0.69 0.19 0.48 0.13 0.43 0.12
P10: The Effect of Asymmetry on the On-Line.. 0.17 1.00 0.17 1.00 0.17 0.99 0.16 0.86 0.14 0.86 0.14 0.74 0.12

Table 3. Equi relevance of selected co-authors of michalis (Ranked descending their pw½1�).

Name lið:Þ frð:Þ dv½1�ð:Þ dw½1�ð:Þ dv½2�ð:Þ dw½2�ð:Þ pq½1�ð:Þ pw½1�ð:Þ pq½2�ð:Þ pw½2�ð:Þ

Srikanth V. Krishnamurthy 0.60 37 1.00 0.60 0.89 0.53 12.33 7.40 7.40 4.44
Christos Faloutsos 1.80 12 1.00 1.80 0.89 1.60 4.00 7.20 2.40 4.32
Jun-Hong Cui 0.81 11 1.00 0.81 0.89 0.72 3.67 2.97 2.20 1.78
Thomas Karagiannis 0.70 10 1.00 0.70 0.89 0.62 3.33 2.33 2.00 1.40
Michael Mitzenmacher 1.40 3 1.00 1.40 0.89 1.24 1.00 1.40 0.60 0.84
George Varghese 1.38 2 1.00 1.38 0.89 1.23 0.67 0.92 0.40 0.55
Konstantina Papagiannaki 0.61 4 1.00 0.61 0.89 0.54 1.33 0.81 0.80 0.49
Samuel Madden 1.61 1 1.00 1.61 0.89 1.43 0.33 0.54 0.20 0.32
Marek Chrobak 0.33 4 1.00 0.33 0.89 0.29 1.33 0.44 0.80 0.27
Jakob Eriksson 0.15 7 1.00 0.15 0.89 0.13 2.33 0.35 1.40 0.21

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-7

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

other nodes in the OS. For instance, in Table 2, we find
6 out of 10 papers including the word \Multicast" (e.g.,
P1;P2;P4, etc.) and two papers including a pair of words
\Aggregated Multicast". Thus, papers have some similarity
due to the frequent common topics (e.g.,\Aggregated
Multicast") and hence they should also be analogously
represented.

For this purpose, for a given graph node ni in a PSize-l PSl,
we propose the use of the proportional quotient as follows:

pqðniÞ ¼

X
nj2OS

simðni; njÞ
� �

X
nj2PSl

simðni;njÞ þ 1
RðniÞ is sim relation

frðgðniÞÞ
� � zðgðniÞÞ þ 1

RðniÞ is equi relation

8>>>>><
>>>>>:

;

ð4:2Þ
where RðniÞ is the relation where ni belongs, simðni; njÞ is the
similarity between the two nodes (as defined in Eq. (4.1)) and
� is a constant that can tune proportionality. For equi rela-
tions, zðgðniÞÞ is the amount of times that node ni appears in
the snippet and frðgðniÞÞ is the frequency that the node
appears in the OS. We use analogous notations as in dvðniÞ.
We denote by pqðnijnj1; . . . ; njxÞ the proportional quotient of
ni when nodes nj1; . . . ; njx have been appended to the snippet.
For equi nodes, we also denote as pq½z�ðniÞ the proportional
score considering ni appears z times (Table 3).

This equation is inspired by the Sainte-Laguë Algorithm 416

(with � ¼ 2) and empirically we found that it is very effective
for our problem (other equations can also be considered, e.g.,
Refs. 17 and 18). The rationale of this quotient is to favor
a frequent node (or nodes including frequent topical
words) and each time a node is added to the snippet its
proportional score is significantly decayed so that other
frequent nodes will be selected, in turn. This way,
diversification is also facilitated. For instance, considering
fr ¼ 12 and � ¼ 2 for C. Faloutsos, by adding this node
once we get pq½1�ðniÞ ¼ 12=3 ¼ 4 and twice we get
pq½2�ðniÞ ¼ 12=5 ¼ 2:4.

4.3. DSize-l and PSize-l definitions

Based on the above discussion, for DSize-l OSs, we propose
the following combining score per node:

dwðniÞ ¼ liðniÞ � dvðniÞ; ð4:3Þ
where liðniÞ ¼ af ðniÞ � giðniÞ is the local importance of ni and
dvðniÞ is the diversity factor (Eq. (4.1)). Tables 2 and 3 depict
examples of how these scores can be obtained by constituent
scores for l ¼ 10. For instance, consider the simplified
example where we need to select five authors (and thus an
intermediary paper), then we will select twice C. Faloutsos
(i.e., 0:89 � 1:8þ 0:89 � 1:8 ¼ 1 � 1:8þ 0:78 � 1:8) and once
S. Madden (1 � 1:6), M. Mitzenmacher (1 � 1:4) and G.Varghese
(1 � 1:4). Note that a third addition of C. Faloutsos cannot

compete the total 1.4 score, as the additional score is only 1.12
(i.e., (3 � 0:78� 1� 0:78Þ � 1:8 ¼ 0:56 � 1:8 ¼ 1:08).

Definition 1 (DSize-l OS). Given an OS and l, a DSize-l OS
is a subset of OS that satisfies the following:

(1) The size in nodes of DSize-l OS is l (where l � jOSj)
(2) The l nodes form a connected tree rooted at nDS

(3) Each node ni carries a weight dwðniÞ (obtained by Eq. (4.3))
(4) The aggregated score of a DSize-l OS DSl can be cal-

culated by:

ImðDSlÞ ¼
X
ni2DSl

dwðniÞ: ð4:4Þ

Let a candidate DSize-l OS be any OS subset satisfying condi-
tions 1–3; then, the optimal DSize-l OS is the candidate snippet
that has the maximum ImðDSlÞ among all such candidates.

Find an optimal DSize-l OS. Given an OS and l, find a
candidate DSize-l OS of maximum score (according to
Definition 1). Analogously, we define the proportionality
score per node (i.e., pwðniÞ ¼ liðniÞ � pqðniÞ, instead of
Eq. (4.3)), PSize-l OS and the optimal PSize-l OS problem
(a formal definition is omitted due to the interest of space).
For instance, we observe that our selection policy will favor
first the addition of S. Krishnamurthyan author and the
respective co-authored paper; then, the addition of author
C. Faloutsos with a co-authored paper; then, another round
with these two authors, etc.

Problem Definitions and Algorithms. We have two types
of problems, namely PSize-l and DSize-l generation. In
addition, an OS may have only equi relevance or both equi
and sim relevance. Thus, we have four combinations of
problems and thus we propose algorithms that are general to
address all these combinations. Firstly, we propose a brute-
force algorithm which is prohibitively slow. Then, we pro-
pose two greedy algorithms LASP and 2-LASPe (which is
LASP's optimization). Finally, we propose pruning algorithms
that can produce pruned preliminary results. We can apply all
aforementioned algorithms on these preliminary OSs.

Notation. For simplicity, we unify dwð:Þ and pwð:Þ into a
single notation wð:Þ and use wðniÞ to refer to the corre-
sponding diversity or proportionality score of a node ni in a
DSize-l OS or PSize-l OS, respectively. Analogously to di-
versification and proportionality scores notations, we denote
wðnijnj1; . . . ; njxÞ as the score given nj1; . . . ; njx have been
added and w½z�ðniÞ as the score when ni is added for the zth
time. In the rest of the paper, whenever the context is clear,
we drop ni or ðnijnj1; . . . ; njxÞ from the notation and denote
the diversity/proportionality score of a node simply by wð:Þ.

5. Largest Averaged Score Path

The BF-l algorithm can be very expensive even for moderate
values of l or jOSj. Thus, we propose Largest averaged score

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-8

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

path (LASP), a greedy algorithm, that can produce a size-l OS
of high quality at a much lower cost. In a nutshell, LASP
firstly generates the OS. It also calculates for each node ni an
initial wðniÞ score (i.e., wðnij�Þ, using Eq. (4.3)) and its
corresponding average wðniÞ score per node (denoted as
apðniÞ) of the path from ni to the root. Then, the algorithm
iteratively selects and adds to the size-l OS the path pi of
nodes with the largest apð:Þ. The rationale behind selecting
paths instead of single nodes with the largest score is that we
can include nodes of very large importance while their
ancestors have less importance as their score is averaged.
Algorithm 3 is a pseudocode of the heuristic and Fig. 4
illustrates an example.

LASP is a general algorithm that (1) can compute both
types of size-l OSs (i.e., DSize-l and PSize-l OSs) and (2) can
process both relevance types (i.e., equality and similarity).
The difference between the two size-l types is that the pro-
portionality equation also considers the similarity/equality
(frequency) of each node against all other nodes, which is
calculated during the OS generation process (to be described
in more detail shortly). LASP can process both relevance
types by using the pre-calculated sim matrix (a matrix storing
the similarity among all nodes), which facilitates the initial
calculation of wð:Þ and apð:Þ and the consequent updates
(to be described in more detail shortly). Thus, given an OS
annotated with wð:Þ and apð:Þ scores, the problem of deter-
mining either DSize-l or PSize-l using either equality or
similarity relevance type remains the same for LASP.

More specifically, the LASP algorithm firstly generates
the OS (line 1). During OS Generation(), LASP also cal-
culates the wð:Þ score and the respective apð:Þ score per node.

For the DSize-l, the calculation of dvð:Þ (and thus wð:Þ) is
straightforward; whereas for the PSize-l, the calculation of
pqð:Þ is more demanding, as it requires the comparison of
each node against all other nodes. Thus, for equi relations, in
order to facilitate faster calculation of pqð:Þ scores, we also

(a) The initial OS

(b) First update

(c) The final update

Fig. 4. The LASP algorithm: The Size-5 OS (annotated with OS and
(graph) node ID, wð:Þ and apð:Þ; selected nodes are shaded).

Algorithm 3. The Largest Averaged Path Algorithm
LASP (l, nDS)

1: OS Generation (nDS){g}enerates OS, w(.), ap(.), HFr and W
2: while (|size-l| < l) do
3: pi=path from maximum W node
4: add first (l−|size-l|) nodes of pi to size-l
5: if(|size-l| < l) then
6: remove selected path pi from the OS tree and from W
7: UpdateRemPaths (pi)
8: UpdateRelScores (pi)
9: return size-l

UpdateRemPaths (pi)

1: for each child v of nodes in pi do
2: for each node nj in the subtree rooted at v do
3: update ap(nj) on the OS tree
4: update ap(nj) on W

UpdateRelScores (pi)

1: for each node ni in pi do
2: for each unselected OS node nj do
3: if(sim(nj , ni) > 0) then
4: update w(nj) considering sim(nj , ni)
5: for each node nk in the subtree rooted at nj do
6: update ap(nk) on OS tree using w(nj)
7: update ap(nk) on W

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-9

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

maintain a hash table of graph nodes (denoted as HFr)
containing the frequency of a graph node in the OS tree
(denoted as fr). HFr can easily be compressed by excluding
nodes appearing only once in the OS; thus, if a node does not
exist in HFr, we can infer that it only appears once. For sim
relations, we compare each node against all other nodes as to
obtain their pqð:Þ. Note, that sim comparisons are more ex-
pensive (i.e., ðnþ1Þ�n

2 time) in contrast to equi HFr-based
comparisons that require only n time. During the OS gener-
ation, we also generate a priority queue W of the initial apð:Þ,
in order to better manage nodes.

We then select the node with the largest apð:Þ and add the
corresponding path to the size-l OS. We remove this pi from
the OS and from W (lines 6). By removing the nodes of pi
from the OS, the tree now becomes a forest; each child of a
node in pi is the root of a tree. Accordingly, the apð:Þ of
affected nodes is updated (1) to disregard the removed nodes
in the path (UpdateRemPaths()) (2) and also to consider the
revised wð:Þs due to relevance to newly added nodes
(UpdateRelScores()). Note that the apð:Þ of an unselected
node corresponds to the wð:Þ score, the node will have if
included in the snippet (considering also the similarity loss of
already added nodes for the diversity case, i.e., dv). Thus, wð:Þ
and apð:Þ scores of all unselected nodes should be updated
each time a new node is added (by functionUpdateRelScore()).
Also note that this general LASP can be significantly more
expensive than the version of LASP presented in Ref. 19, since
for the latter it suffices to simply count fr and z of added nodes
for the estimation of apð:Þ and wð:Þ scores.

This process (i.e., the selection of the path with the largest
apð:Þ, the addition to the size-l OS, and the required updates)
continues iteratively as long as the selected nodes are less
than l. If less than jpij nodes are needed to complete the size-l
OS only the top nodes of the path are added to the size-l OS
(because only these nodes are connected to the current size-l
OS). Note that each time a path is selected, it is guaranteed to
be connected with the previously selected paths (as the root of
the selected path should be a child of a previously selected
path), therefore the selected paths will form a valid size-l OS.

Take for instance the example of Fig. 4, where nodes
at level one have similarity relevance and nodes at level
two have equality relevance. More precisely, consider
simðn3; n4Þ ¼ simðn4; n5Þ ¼ 0:6; whereas equality relevance
is annotated on the example of figure (e.g., gðn7Þ ¼ gðn9Þ ¼
gðn11Þ ¼ v7). Node n11 (i.e., graph node v7) has
apðn11Þ=48.6, because its path includes nodes n1; n5 and n11
with average wð:Þ being ð30þ 36þ 80Þ=3 ¼ 48:6. Assum-
ing that l ¼ 5, at the first iteration, the algorithm selects and
appends to size-l OS the path comprising nodes n1; n5 and n11
with the largest apð:Þ, i.e., 48.6. For the remaining nodes,
wð:Þ and apð:Þ are updated to disregard the removed nodes
and also to consider the inclusion of newly added nodes
(Fig. 4(b)). For instance, the revised apðn12Þ is
ð35þ 55Þ=2 ¼ 45, because its path now includes only n6 and
n12. Also, nodes n7 and n9 which correspond to the same

graph node as n11 and node n4 which has similarity with node
n5 which have just been added to the size-l also need to be
updated with new wð:Þ and apð:Þ scores. In general, if such
nodes have descendants, then their descendants should also
be updated because both their apð:Þs and wð:Þ are affected.
The next path to be selected is that ending at n8, which adds
two more nodes to the size-l OS (Fig. 4(c)). Note that apðniÞ
for each node ni corresponds to the path starting from ni to the
root of the corresponding unselected tree (from the unselected
forest). For instance, during the second update, p8 comprises
n2 and n8. Note also that the path's root (e.g., n2) is always
the child of a node (in the OS) which already exists in the
current size-l OS, e.g., n1 in this case. Thus, each time we
select a path to append to the size-l OS, we always get a valid OS.

6. 2-LASPe

The runtime cost of LASP is dominated by the numerous
updates it applies; each time we add a node (or path) to the
snippet, we have to update up to twice each of the remaining
nodes. Thus, we introduce the 2-LASPe algorithm, an en-
hancement of LASP, that aims to reduce where possible such
updates. In a nutshell, 2-LASPe facilitates update reductions
at both UpdateRemPaths() and UpdateRelScores() phases.
The algorithm remains, like LASP, general and can address
both types of size-l and relevance. Algorithm 4 illustrates the
differences of the two functions from the respective original
functions of the LASP algorithm; whereas Fig. 5 illustrates an
example.

We propose to relax LASP by averaging wð:Þ pairs of
nodes (hence the prefix 2 to the name of the algorithm).
Namely, we take the average between the current node and
the parent instead of the whole path from the current node to
the root. As a consequence of this relaxation, updates will be
required only on the affected pairs rather on the whole path to
the root. Recall that the rationale of considering the average
from each node to the root in LASP was to exploit nodes
lower on the tree with larger scores than their ancestors. We
observe that because of the proposed equations we expect
recurrent monotonicity in the OSs; i.e., recurrent cases where
the wð:Þ of the parent is bigger than that of its child. Recall that,
lið:Þ ¼ af ð:Þ � gið:Þ where af ð:Þ is monotonic by definition and

Algorithm 4. 2-LASPe Algorithm
2-LASPe (l, nDS) UpdateRemPaths (pi)

1: for each child nj of nodes in pi do
2: update ap(nj) on the OS tree
3: update ap(nj) on W

UpdateRelScores (pi)

1: for each node ni in pi do
2: for each similarity edge se(ni, nj) (of ni with an unselected nj

node) do
3: update w(nj) considering sim(nj , ni)
4: deleteEdge(se(ni , nj))
5: for each child nk of nj do
6: update ap(nk) on OS tree using w(nj)
7: update ap(nk) on W

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-10

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

additionally both dvð:Þ and pqð:Þ equations are monotonic to z
(and additions of similar nodes), where z is expected to be larger
at the bottom levels of the OS tree.

Secondly, we introduce a similarity index on the OS tree,
denoted as simOS tree (see Fig. 5) (instead of using the HFr
of LASP and 2-LASP19). This simOS tree is generated during
the OS Generation() function (line 1). For each pair of nodes
that there exists a similarity, we add a similarity edge carrying
the similarity value, denoted as seðni; njÞ. Using the similarity
edges, we can limit checks of newly added nodes against only
unselected nodes that we know they have a similarity (thus
the suffix e for edge to the name of the algorithm). This is in
contrast to LASP which checks against all unselected nodes.

Let us first demonstrate the updates due to removals of
paths. At each addition, we update only pairs of scores, i.e.,
apð:Þ between the affected node and its parent (instead of all
remaining paths towards the root). For example, after adding
path p11, in 2-LASPe, we only need to update nodes at level 1,
except the included n5 node (since node n1 is removed). Let
us now demonstrate the updates due to relevance between the
selected path and unselected nodes. We can easily determine
from the simOS tree that p11 path's nodes have similarity with
n4; n7 and n9 nodes and thus update them according to their
similarities. Since at each iteration, we only need to check the
similarity between a newly selected node against all unse-
lected nodes, we delete all similarity edges of a newly se-
lected node (line 4). Thus, after the first update and removal
of p11 path, similarity edges of n5 and n11 nodes are deleted
from the simOS tree.

7. Prelim-l Algorithms

The aforementioned algorithms operate on the complete OS.
Inspired by the prelim-l approach,7 we propose to produce a
subset of the OS, denoted as DPrelim-l (or PPrelim-l) OS,
that prunes nodes from the OS which have low probability to
be considered for the size-l OS; this saves a lot from the OS
generation time and the consequent size-l OS computation
time. Note that the prelim-l generation approach of Ref. 7
considers the inclusion of the top-l nodes, i.e., the l nodes
with the highest lið:Þ in the OS (allowing their repetitions); for
clarity, we refer to this algorithm as VPrelim-l. The direct
application of VPrelim-l is inappropriate here, especially for
the PPrelim-l OS, for the following three reasons: (1) it allows
the consideration in the top-l set of nodes repeatedly which is
against the diversification requirements of PSize and DSize;
(2) it fails to manage the nonmonotonic relationship between
wðnij:Þ and liðniÞ of proportionality (e.g., wðnij�Þ > liðniÞ),
which requires the challenging estimation of similarity among
nodes (and frequency per node) in the OS; and (3) it does not
facilitate further pruning of nodes that have similarity with
already added nodes (or are included multiple times).

Recall, however, that the two properties, proportionality
and diversity, are based on different equations and thus have
different properties in measuring the wð:Þ score. More precisely,

(a) The initial OS (and simOS)

(b) First update

(c) Final update

Fig. 5. 2-LASPe algorithm (annotated with similarity edges of
unselected nodes).

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-11

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

the proportionality equation is more challenging as it requires
the apriori knowledge of similarity between nodes (and fre-
quency of nodes) in an OS in order to produce wð:Þ scores.
Thus, we first present more comprehensively a generalized
version of the VPrelim-l approach, which addresses propor-
tionality. This algorithm, denoted as PPrelim-l, considers the
similarity/frequency and respective upper bounds of nodes in an
OS, in order to produce the so-called PPrelim-l OS. Then, we
present more synoptically the DPrelim-l algorithm with the re-
quired specializations and simplifications in order to produce
DPrelim-l OS.

7.1. PPrelim-l

The computation of the optimal PSize-l OS is very expensive
and, as a consequence, so is the computation of any PPrelim-l
OS that is guaranteed to include the optimal PSize-l OS.
Thus, we resort to a heuristic that aims to generate a PPrelim-l
OS that includes at least the l diverse graph nodes (i.e., nodes
that their similarity is less than a threshold dð�Þ) with the
largest wðnij�Þ scores (denoted as the topwl set).

The rationale is that while searching for topwl and by
appending the retrieved nodes to the PPrelim-l OS, we will
generate a good superset of the PSize-l OS. The constraint of
including only diverse nodes in topwl is necessary in order to
facilitate eventual diversity.

We generate the PPrelim-l OS by extending the complete
OS generation algorithm (Algorithm 1, described in Sec. 2
and in Ref. 4) to include three pruning conditions. We tra-
verse the GDS graph in a breadth first-order, according to
Algorithm 5. For this purpose, cheap pre-computed indexes,
variables and data structures are employed. Hereby, we de-
scribe the algorithm by introducing the (1) pre-computed in-
dexes per relation and nDS, (2) variables and data structures and
(3) the pruning conditions that are used as to construct the
algorithm. We try to describe these terms, where possible, in
the order they appear in the algorithm. Figures 6 and 7 illustrate
an example and Table 4 summarizes the notation we are using.

The calculation of sim relevance requires more time (i.e.,
quadratic; as we have to compare each node against all
remaining nodes); in comparison to equi relevance which
simply requires counting the frequency of graph nodes. Thus,
we address the two relevance types separately. For instance,
for sim relations, we rely mainly our pruning on pre-computed
indexes (e.g., mwðnDS;RiÞ to be described shortly); whereas
for equi relations, we achieve further pruning by using online
retrieved information (e.g., cmFrðRiÞ to be described shortly).

Index per GDS Relation. Our PPrelim-l OS generation
technique uses three indexes (i.e., bounds) for each GDS re-
lation Ri, which are pre-computed. maxðRiÞ is the maximum
value of lið:Þ in Ri. mmaxðRiÞ is the maximum value of max
ðRiÞ of all Ri's descendant nodes in GDS or 0 if Ri has no
descendants (i.e., Ri is a GDS leaf node). Finally, UBFr(Ri) is
the upper bound of joins a node in Ri can have with any nDS.
During pre-processing, we can determine only for some cases

these bounds; e.g., when up to 1 node from a relation (e.g.,
RPaper) can only join with nDS. Otherwise, we assume infinite
joins (e.g., the same co-author may appear in an unbounded
number of papers) and set UBFr(Co-author) ¼ 1.

Algorithm 5. The PPrelim-l OS Generation Algorithm
PPrelim-l (l, GDS)

1: t = 0; nj = nDS; Wl = {}; Q = {}
2: addNode(nj)
3: while !IsEmptyQueue(Q) do
4: Xnj = nj ; nj = deQueue(Q)
5: for each child relation Ri of R(nj) in GDS do
6: if (UBFr(Ri)>1) then
7: if (R(nj) = R(Xnj)) then {nj ∈ new relation}
8: cmFr(Ri) = 0; i = c(RPari)
9: UBFr(nj , Ri)=min{− − i+cmFr(Ri), mFR(nDS)}

10: else
11: UBFr(nj , Ri) = 1
12: UBw(nj , Ri)= min{mw(nDS, Ri), f1(min{max(Ri),

max(nDS)}, min{(mFr(nDS), UBFr(Ri), UBFr(nj , Ri)})}
13: dUBw(nj , Ri)= min{mmw(nDS, R1), f2(min{mmax(Ri),

max(nDS)}, min{(mFr(nDS), dUBFr(Ri)})}
14: if !(t≥UBw(nj , Ri) && (t≥dUBw(nj , Ri))) then {Prun.

Cond.1}
15: if (t≥dUBw(nj , Ri)) then {Prun. Cond.2}
16: Ri(nj): get up to diverse l nodes with UBw(.) > t where

UBw(.) = f3(.)
17: else
18: get Ri(nj)
19: for each tuple ni of Ri(nj) do
20: if Ri is equi relation then
21: if (UBFr(Ri)> 1) then
22: UpdateHFr(ni)
23: UpdatecmFr(ni)
24: w(ni)[1]=f(li(ni), HFr[g(ni)].fr, 1){E}q. 4.3
25: if !((HFr[g(ni)].fr>1) && (w(ni)[2]<t) && (t ≥

dUBw(nj , Ri))) then {Prun. Cond.3}
26: addNode(ni)
27: else if (Ri is sim relation)
28: addOnHSi(ni)
29: for each nk in HSi do
30: if sim(ni, nk) then
31: Update (w(ni|∅), sim(ni, nk))
32: Update (w(nk|∅), sim(nk , ni))
33: cSim(ni) =true
34: w(ni)[2] = f (w(ni|∅), 2){E}q. 4.3
35: if (!(cSim(ni) && (w(ni)[2] < t) && (t ≥

dUBw(nj , Ri)))) then {Prun. Cond.3}
36: addNode(ni)
37: return PPrelim-l

addNode (ni)

1: EnQueue (Q, ni)
2: add ni on PPrelim-l as child of nj or as root if ni is nDS

3: if (w(ni)[1] > t) then
4: if ni is not similar with any nodes in Wl then
5: EnQueue (Wl, ni)
6: if (|Wl| > l) then
7: DeQueue(Wl)
8: if ((|Wl| < l)) then
9: t = 0

10: else
11: t =minimum(Wl)

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-12

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

In order to facilitate the calculation of UBFr(Ri), we also
introduce the cðRiÞ variable which is the summation of tuples
from Ri that can join with nDS. Thus, for N:1 relationships,
cðRiÞ ¼ cðRPariÞ, where cðRDSÞ ¼ 1 and RPari is the parent

relation of Ri. Thus, given cðRPariÞ for cases where UBFr
(Co-author) ¼ 1, we estimate UBFr(Ri) as a function of
cðRPariÞ, i.e., UBFrðRiÞ ¼ cðRPariÞ (denoted as 1 ! cðRiÞ
in Fig. 7); this association will be useful later, during the

Fig. 6. PPrelim-l Example for l ¼ 5 (The complete OS, the PPrelim-l OS and the topwl set). Edges between nodes indicate their similarity.
Nodes are annotated with their lið:Þ; pqð:Þ and wð:Þ. Nodes with low transparency are pruned nodes (e.g., n8; n11, etc.), shaded nodes are the
topwl set (e.g., n1; n7, etc.) and the rest are the remaining tuples of the PPrelim-l OS. (e.g., n2; n3, etc.)

Fig. 7. The DBLP Author GDS; annotated with relation indexes: (relevance type), maxðRiÞ; mmaxðRiÞ, UBFr(Ri), cðRiÞ, and nDS indexes
for the example of Fig. 6: (cðRiÞ), UBFr(Ri), mFrðnDSÞ;mwðnDS;RiÞ, etc.)

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-13

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

online calculation of tighter frequency bounds. Also note that
since, we only need cðRPariÞ, we do not need to calculate
cðRiÞ for leaf nodes (thus we denote their cð:Þ as () in Fig. 7).
Finally, we define and use index dUBFr(Ri), which is the
upper bound of joins of a node belonging to any descendant
relation of Ri that can have with any nDS.

Index per nDS node. During pre-processing, we also
maintain a number of indexes per nDS. mwðnDS;RiÞ is the
maximum wðnij�Þ of any node in Ri (note that this can be
prohibitively expensive to calculate online and can render the
pruning ineffective). For instance, in our running example for
Paper, we have mwðnDS;RiÞ ¼ 0:11. mmwðnDS;RiÞ is the
maximum value of mwðnDS;RiÞ of all Ri's descendants or 0 if
Ri has no descendants (leaf node) (it can cheaply be obtained
from descendants' mwðnDS;RiÞ. For example, for the Paper
relation, mmwðnDS;RiÞ ¼ 0:4 due to mwðnDS;RiÞ ¼ 0:4 of the
Co-Author relation. maxðnDSÞ is the maximum lið:Þ for all nodes
in an OS (excluding nDS); e.g., in Fig. 7, maxðnDSÞ ¼ 0:9 is
found in the ConfYear relation. Note that this score overrides the
maximum lið:Þ score of all GDS relations (i.e., maxðRiÞ and
mmaxðRiÞ).mwðnDSÞ is the maximumwðnij�Þ of any node in the
OS (excluding nDS). Similarly to maxðnDSÞ, this score is consid-
ered as the upper bound ofwð:Þ of all nodes of all relations (e.g., in
our running example, mwðnDSÞ ¼ 0:4 is found in relation Co-
Author). mFrðnDSÞ is the maximum frequency of any node in the
OS that belongs to a relation with UBFrðRiÞ > 1, where mFRð
nDSÞ � UBFr(Ri). For instance, in our example, mFrðnDSÞ ¼ 2
(since ca1 and ca3 appear twice); which is less than
UBFrðRiÞ ¼ 3, thus we can use this as a tighter bound and thus
override the UBFr(Ri) bound.

Variables and data structures. Let RiðnjÞ be the subset
of Ri that joins with nj and RðniÞ be the relation where to ni
belongs. While processing nj (in RðnjÞ) against a relation Ri

with UBFrðRiÞ > 1, we try to get a tighter bound than UBFr
(Ri) and mFrðnDSÞ, denoted as UBFr(nj;Ri). For this purpose,

we maintain the current maximum frequency, denoted as
cmFrðRiÞ, a node was found so far from Ri (i.e., from pro-
cessing predecessor nodes, n1; . . . ; nj�1, of nj against Ri, i.e.,
from their respective Riðn1Þ; . . . ;Riðnj�1Þ sets). For instance,
consider we are processing node n4ðp4Þ against the Co-
Author relation, node ca1 is the most frequent among all
Riðn1Þ; . . . ;Riðnj�1Þ sets that was found so far since it was
found twice; thus cmFrðRiÞ ¼ 2. Given cmFrðRiÞ, UBFr
(nj;Ri) assumes that ca1 will appear in all the remaining sets
RiðnjÞ; . . . ;RiðnjRijÞ after processing nj. At the beginning,
UBFr(nj;Ri) can be very loose, so we compare it with
mFrðnDSÞ, to keep the minimum of the two (lines 6–11).

Another bound, we use is UBw(nj;Ri), which is the upper
bound of the wðnij�Þ score that can be obtained from RiðnjÞ
(line 12) (this value will be useful as to facilitate Pruning
Condition 1). It is defined as the minimum of f1ð:Þ and
mwðnDS;RiÞ. The mwðnDS;RiÞ index can be a very effective
pruning tool for both relevance types. f1ð:Þ aims to facilitate
further pruning for equi relations thus is defined as follows:
for sim relations is set to 1 (as we do not expect to achieve a
better bound than mwðnDS;RiÞ that can be practically useful);
whereas for equi relations is calculated using Eq. (4.3) for z ¼ 1.

We denote as dUB(nj;Ri) the upper bound of wðnij�Þ of
all nodes from Ri's descendant relations that can join with nj
or 0 if Ri has no descendants (and it will be useful in facili-
tating Pruning Condition 2). Similarly to UBw(nj;Ri) calcu-
lation, dUBw(nj;Ri) can be defined as the minimum of
mmwðnDS;RiÞ and f2ð:Þ. f2ð:Þ is also defined by Eq. (4.3) for
z ¼ 1 (line 13). The mmwðnDS;RiÞ index can be a very ef-
fective pruning tool for both relevance types. Analogously,
f2ð:Þ aims to facilitate further pruning for equi relations thus is
defined as follows: for sim relations is set to 1; whereas for
equi relations is calculated using the given parameters. Also
note that, if Ri is a leaf node on GDS then mmaxðRiÞ=0 and
thus dUBwðni;RiÞ ¼ 0. UBw(nj;Ri) and dUBw(nj;Ri)
bounds are specializations of maxðRiÞ and mmaxðRiÞ that
have been used in prelim-l7 in Pruning Conditions 1 and 2,
respectively; however, they are tighter bounds as they are
specific for the given nDS.

Finally, we define the upper bound of wðnij�Þ score of a node
as UBwðniÞ (which will be useful during Pruning Condition 2;
line 16). We calculate UBwðniÞ using the respective pqðnij�Þ
produced by function f3 which is defined as follows. For an Ri

being an equi relation, pqðniÞ½1� ¼ f3ðliðniÞ, UBFr(nj;Ri)).
Whereas, for an Ri being a sim relation, pqðnij�Þ ¼ f3ðððjOSð
RiÞj� UBFrðnj;RiÞÞ � msimðniÞþ UBFrðnj;RiÞ � 1Þ � liðniÞÞ;
where jOSðRiÞj is for UBFrðRiÞ ¼ 1 the amount of nodes of
Ri in the OS and for UBFrðRiÞ > 1 cðRPariÞ.msimðniÞ is the
maximum similarity of an ni node with any other node in the
OS. Namely, we assume that ni appears UBFrðnj;RiÞ times (thus
UBFrðnj;RiÞ � 1 similarity) and has the maximum similarity
with all OSðRiÞ nodes.

As we have already explained, we process sim and equi
relations separately. Thus, while processing equi relations we
maintain HFr, a hash table, which indexes for each graph

Table 4. Notations of the PPrelim-l Algorithm.

Notation Definition

topwl set The l diverse graph nodes with the largest w scores
maxðRiÞ The maximum value of lið:Þ in Ri

mmaxðRiÞ The maximum maxðRiÞ in all Ri's descendentant nodes
or 0 if Ri has no descendants

UBFrðRiÞ The upper bound of joins a node in Ri can have with
any nDS

mwðnDS;RiÞ The maximum w score of Ri nodes in the nDS OS
mmwðnDS;RiÞ The maximum mwðnDS;RiÞ of all Ri's descendents or 0

if Ri has no descendants
mwðnDSÞ The maximum w score of nodes in the nDS OS
mFrðnDSÞ The maximum frequency of any node in the OS
RðniÞ The relation ni belongs to
RiðnjÞ The subset of Ri that joins with nj
cðRiÞ The summation of nodes in Ri that can join nDS

UBwðnj;RiÞ The upper bound of w in RiðnjÞ
dUBwðnj;RiÞ The upper bound of w from all Ri's descendentants

that join with nj

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-14

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

node the computed frequency in the OS so far (lines 22 and
23). And while processing sim relations, we maintain HSi
hash table which indexes the similarity of each OS node
against all other OS nodes (i.e.,

P
nj2OSsimðni; njÞ). The up-

date of HSi requires quadratic time as we need to compare the
similarity of each node against all previous nodes already on
HSi (lines 29–32). We also use the cSimðniÞ flag variable to
indicate whether ni is similar to other nodes (line 33). We also
denote as wðniÞ½2�, the wðniÞ score given another node with
maximum similarity with ni has previously been added (lines
16 and 34); maximum similarity is the equality similarity
(thus the common use of the equi notation).

We manage the retrieval of topwl set as follows. Let t be
the current smallest value of the topwl set (or 0 if topwl does
not contain l values yet). If the current tuple ni is greater than t
(line 3, function AddNode) and if ni is diverse to all
topwl nodes then is added to the PPrelim-l and the l-sized
priority queue Wl which manages the topwl set (AddNode(),
lines 4–11). For instance, in Fig. 6 the shaded nodes comprise
the final topwl set for the given OS. Note also that although
node n16 has score larger than t ¼ 0:18, it is excluded as it is
similar (equal) with node n10. Note that by considering the
computed similarity/frequency of a node ni so far, which is
less than or equal to actual similarity/frequency of ni, in fact
we consider the lower bound of wð:Þ.

Pruning Conditions. Each time we further process a node
nj, we employ three pruning conditions:

. Pruning Condition 1. If t is greater than or equal to the
wðnij�Þ of all tuples of the current relation Ri and all its
descendants (i.e., t > UBwðnj;RiÞ and t > dUBwðnj;RiÞ),
then there is no need to traverse the sub-tree starting at Ri

(line 14).
. Pruning Condition 2. We can limit the amount of tuples
returned by an RiðnjÞ join (i.e., by avoiding computing the
entire join of nj with Ri), if we can infer that none of Ri's
descendants (if any) can be fruitful for the topwl (i.e., when
t > dUBðnj;RiÞ; line 15). Then, we can extract only nodes
that their upper bound wðnij�Þ score, UBwðniÞ, is greater
than t (line 16).

. Pruning Condition 3. When Pruning Condition 2 holds, we
can safely extract only part of the join. However, it is still
possible that we extracted nodes which are similar to al-
ready added on the PPrelim-l nodes; and thus their wðnij
nj1; . . . ; njxÞ will be actually used. Thus, we introduce a
new pruning condition that checks first if a node ni is
similar to an added node and then consider adding it. For
equi relations, we can easily detect equality by accessing
HFr. Whereas for sim relations this is more demanding
(requiring quadratic time; lines 29–33), thus we use the
cSimðniÞ flag variable to detect similarity. For both cases,
we use a safe bound, i.e., wðniÞ½2�, and we do not add the
node unless it is greater than t (lines 25 and 35). Recall that
these scores are actually lower bounds as they are produced
by comparison against only already retrieved nodes.

8. Experimental Evaluation

We experimentally evaluate the proposed snippets and algo-
rithms. We emphasize on effectiveness comparisons between
the two types of diversified snippets, the two types of rele-
vance and also against the nondiversified size-l snippets.7

Firstly, we thoroughly investigate the effectiveness and us-
ability of the produced snippets with the help of human
evaluators. Then, we evaluate the quality of the size-l OSs
produced by the greedy heuristics. Finally, we comparatively
investigate the efficiency of the proposed algorithms.

We used two databases: DBLP and Googleþ. The two
databases have 3M and 14M tuples and occupy 513MB and
800MB on the disk, respectively. Googleþ dataset was
constructed by combining real data extracted from Googleþ
(i.e., users, activities and reactions which are publicly avail-
able). Followers and circles which were dealt as private by
Googleþ (and thus were publicly unavailable) were gener-
ated from the synthetic SNAP dataset.a We calculate global
importance by using global ObjectRank.9 For the DBLP
dataset, we use the default setting used in Refs. 9 and 7, i.e.,
the GA shown in Fig. A.1(a) and d ¼ 0:85 and for Googleþ
the GA presented in Fig. A.1(b) and also d ¼ 0:85. We cal-
culate af ð:Þ as in Ref. 7. We used an expert to classify each
relation as a sim or equi. For sim relations, we compare the
respective naming attributes only (where naming attributes
are as defined in Ref. 8, e.g., names, paper's title). We used an
expert to define these naming attributes (alternatively, we can
semi-automate this by using the attribute clustering approach
of Ref. 4). More precisely, we used Jaccard distance on the
respective naming attributes (preliminary experimentation
revealed that alternative techniques (such as IR) have insig-
nificant impact on the overall effectiveness results; thus we
present results only using Jaccard). Recall that an equi size-l
considers only equi relevance whereas a sim size-l considers
both sim and equi relevance. For proportionality, we use � ¼ 2.
We used Java, MySQL, and a PC with an AMD Phenom 9650
2.3GHz (Quad-Core) processor and 8GB of memory.

8.1. Effectiveness

We conducted an effectiveness evaluation with the help of
human evaluators. The evaluators were professors and
researchers from our Universities. None of our evaluators
were involved in this paper. Because of the complexity of the
evaluation (we have to compare five different types of snip-
pets), we used evaluators with expertise in the topics, we
investigate. In particular, since the DBLP database includes
data about real people, we asked the DSs themselves where
possible (i.e., eleven authors or students of authors listed in
DBLP) to participate in this evaluation. The rationale of this
evaluation is that the DSs themselves (even their students)
have the best knowledge of their work and can therefore

ahttp://snap.stanford.edu/data/egonets-Gplus.html.

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-15

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

provide accurate summaries. For Googleþ, we presented 10
random OSs to nine evaluators. First, we familiarized them
with the concepts of OSs in general and the five types of size-l
OSs. Specifically, we explained that a good size-l OS should
be a standalone and meaningful synopsis of the most im-
portant information about the particular DS. In addition, we
explained that DSize-l OSs and PSize-l OSs consider diver-
sity and proportionality respectively and the difference be-
tween the two relevance types. However, we avoided to
discuss the advantages or disadvantages of these combina-
tions of types as to avoid any bias. In order to assist them with
their tasks, we provided them useful information per node,
such as frð:Þ; lið:Þ; dvðnij�Þ; pqðnij�Þ and wðnij�Þ. For in-
stance, we provided them, with the amount of times the co-
author C. Faloutsos appears in the M. Faloutsos OS, his lið:Þ
etc. We also provided summarized ranked tables (similar to
Tables 2 and 3 at the end of each OS) with the top-10 most
frequent and top-10 most important nodes and their respec-
tive wðnij:Þ scores.

8.1.1. Precision and recall

We provided evaluators with OSs and asked them to DSize-l
and PSize-l them using both types of relevance (i.e., equality
and similarity) for l ¼ 10; 15; 30. Figure 8 measures the ef-
fectiveness of our approach as the average percentage of the
nodes that exist in both the evaluators' size-l OS and the
computed size-l OS by our methods. This measure corre-
sponds to recall and precision at the same time, as both the
OSs compared have a common size. Figures 8(a) and 8(b)
plot the recall of the DSize-l and PSize-l for DBLP Author
and Googleþ User GDS's. On average, the effectiveness of
DSize-l and PSize-l OSs ranges from 67% to 82% for all
cases, which is very encouraging. The results of Fig. 8 are
obtained using the LASP algorithm (as the BF-l algorithm
was prohibitively expensive). We omit results obtained by our
other approximate algorithms as they do not vary from these
results. For instance, the 2-LASPe algorithm gave almost
identical results as LASP and the use of DPrelim-l OSs or
PPrelim-l OSs had no impact on effectiveness. As we show

later, they have very minor impact on the quality of the
computed snippets.

8.1.2. Usability test

We conducted a comparative study of the usability of the five
types that verifies users' preference for sim over equi rele-
vance and DSize-l and PSize-l OSs over size-l OSs. In
summary, the evaluation reveals the usability superiority of
sim PSize-l OSs over all other types. Usability is the ease of
use and learnability of a human-made object; namely, how
efficient it is to use (for instance, whether it takes less time to
accomplish a particular task), how easy, it is to learn and
whether it is more satisfying to use.b More precisely, for a
given OS, we measured the ease of use of all types through a
usability test. We presented to users the various versions of
size-l OSs in a random order to avoid any bias and we also
gave them six tasks to complete for each OS. Then, we asked
them to give a score in a scale of 1 to 10 and also to justify in
their answers, where possible, the usability of the five
approaches when completing these tasks. Namely, to score
them considering (1) the ease of accomplishing each task, (2)
how easy and (3) satisfying are to learn and use.

More precisely, the first task (T1) was to score the general
use of all types; namely which one they prefer as a repre-
sentative and informative snippet. For this purpose, we em-
phasized again that a snippet should be short, stand-alone and
a meaningful synopsis of the most important and represen-
tative information about the particular DS; we avoided to
discuss any advantages/disadvantages. The rest of the tasks
were to extract information about the DSs. For the DBLP
Author, Task 2 (T2) was to determine the most frequent co-
authors of a given author (e.g., whether C. Faloutsos and S.
Krishnamurthy are among the most frequent collaborators of
M. Faloutsos). Task 3 (T3) was to determine the most im-
portant co-authors (e.g., whether C. Faloutsos and S. Madden
are among the most important co-authors of M. Faloutsos).
Task 4 (T4) was to determine the most frequent journal/
conference the DS has published. Task 5 (T5) was to determine
the most frequent topic of an author's papers (i.e., repeated set
of keywords appearing in author's papers). Finally, Task 6 (T6)
was to determine the most frequent topic appearing in papers
citing an author's papers. Analogous tasks were used for the
Googleþ User. Namely, T2 was to determine a couple of the
most frequent users in the DS's circles; T3 was to determine a
couple of the most important users in DS's circles; T4 was to
determine the most frequent user making comments on DS's
activities; T5 was to determine the most frequent topic of the
DS's comments and T6 was to determine the most frequent
topics of DS's activities. Note that for comparison purposes, we
maintain an analogy between the respective tasks of the two
databases, e.g., T2 of both databases aim to determine the most

(a) DBLP Author (b) Googleþ User

Fig. 8. Effectiveness (i.e., Recall=Precision). bwww.wikipedia.org/wiki/Usability.

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-16

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

frequent co-authors/users associated with the DS, whereas T3 to
determine the most important co-authors/users, etc.

Figures 9 and 10 average the evaluators' usability scores
of all methods per GDS, per task and per l. More precisely,
respective subfigures (a) represent scores for l ¼ 15, (b) for
l ¼ 30, and (c) the average of all tasks per l. The results show
that evaluators preferred firstly sim PSize-l OSs, secondly
equi PSize-l OSs, then sim and equi DSize-l OSs and lastly
size-l OSs for both datasets. They also preferred size l ¼ 30
over l ¼ 15. For instance for the Author GDS, the average
scores of all tasks and both values of l, for sim PSize-l OSs is
7.5, for equi PSize-l OSs is 7.1, for sim DSize-l OSs is 6.7,
for equi DSize-l OSs is 6.6 and finally for size-l OSs is 6.0.
Evaluators expressed very similar preference for equi and sim
DSize-l OSs because the snippets of these two types are al-
most identical (i.e., their constituent nodes are almost the
same). The reason is that for the specific DBLP Author GDS,
both relevance types equi and sim result to the same DSize-l
OSs; as the sim relevance will only impact towards the
avoidance of including papers or conferences with frequent
textual similarity to already added nodes (which was not very
often in these cases).

The evaluators also provided justifications for their scores.
We summarize them for each type and l and we also analyze
their reflection on the given tasks. The evaluators explained
that in general they prefer the concept of PSize-l OS as it also
considers frequent nodes and topics; this is a property other

types do not consider. This is evidenced by the superiority of
the usability of PSize-l for tasks T2, T4–T6, since these tasks
consider the frequency of nodes and topics. In addition, the
evaluators explained that they found useful results consider-
ing the frequency of keywords (i.e., frequent topics); this is
evidenced by high scores of sim PSize-l for tasks T5 and T6
which address the frequency of topics in the results. However,
as they pointed out, although the inclusion of repeated fre-
quent items or topics is informative, it comes at the cost of
excluding other important nodes. They found that a DSize-l
OS is very useful in covering the most important elements of
an OS (i.e., evidenced by high scores of DSize-l for Task 3);
however, they pointed out that rare but important elements
may appear which again can be misleading to some extent.
They found the nondiversified size-l summaries7 more mis-
leading as very important nodes are too dominant in them.
The evaluators stated that l values of around 30 are the most
appropriate, since the corresponding snippets include suffi-
cient descriptive information about the corresponding OSs,
giving a better representation of frequent and important in-
formation, and without being overwhelmingly large. This is
also evidenced by Figs. 9(c) and 10(c).

8.2. Quality of snippets

We now compare the holistic importance Imð:Þ scores of
DSize-l and PSize-l OSs produced by the greedy methods.

(a) l ¼ 15 (b) l ¼ 15 (c) Average per l

Fig. 9. Usability on DBLP author using equi and sim relevance.

(a) l ¼ 15 (b) l ¼ 15 (c) Average per l

Fig. 10. Usability on Googleþ user using equi and sim relevance.

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-17

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

More precisely, the results of Fig. 11 represent the average
holistic scores for 10 random OSs per GDS. The average size
(i.e., the amount of nodes) of OSs is also indicated (denoted
as (jOSj)). The results show that in most cases, the results of
LASP and 2-LASPe are of very similar (or even identical)
quality, i.e., they have similar (or equal) holistic Imð:Þ scores.
The evaluation also reveals that using the DPrelim-l and
PPrelim-l OSs results to very minor (even to zero) quality loss
compared to using the complete respective OSs; e.g., by
using LASP on either the complete OS or on the corre-
sponding DPrelim-l OS, we obtain a DSize-l OS of the same
ImðDSlÞ. More precisely, for the case of the DBLP Author
equi PSize-l OSs, we get the maximum score loss by our
algorithms; i.e., 2-LASPe Complete and LASP PPrelim-l
algorithms return scores 20 and 15.5, respectively for l ¼ 50.
In the Googleþ User case, respective quality remains the
same for all (combinations of) algorithms (thus we omit sim

DSize-l and sim PSize-l results). We did not compare with the
optimal results, as the BF-l algorithm is too expensive.

8.3. Efficiency

We compare the run-time performance of our greedy algo-
rithms in Figs. 12–14. We used the same OSs as in Sec. 8.2
(i.e., the same 10 OSs per GDS). Figures 12 and 13 show the
costs of our algorithms for computing DSize-l (respectively
PSize-l) for both types of relevance (equi and sim), excluding
the time required to generate and pre-process OSs (i.e., the
generation of wð:Þ; apð:Þ scores, etc.), where each algorithm
operates on.

More precisely, Fig. 12 show the costs of our algorithms
for computing size-ls from OSs of the two GDS s with various
sizes and using a range of l values. The average sizes of the
OSs on which the algorithms operate are indicated in brackets
for each GDS. Figures 13(a) and 13(b) show the scalability for
Author PSize-l of different sizes, after fixing l ¼ 10 (analo-
gous results were obtained from User GDS and DSize-l and
thus we omit them). Each value on the x-axis represents an
OS size (and the corresponding PPrelim-10 size).

Comparing these numbers, we can get an indication of
preliminary OSs savings; e.g., the OS with size 1,309 has a
PPrelim-10 size 157 (i.e., 11% of the size of the complete
OS). From Figs. 12 and 13, we can see that the use of 2-
LASPe on a preliminary OS is the fastest approach. For in-
stance, equi DPrelim-l 2-LASPe for l ¼ 50 requires only
18.3ms. The results also verify that the use of sim relevance
is more expensive than the use of equi relevance as it dictates
the comparison of each node against all other OS nodes. For
instance, sim DPrelim-l 2-LASPe for l ¼ 50 requires up to
33.9ms (which remains a practical time).

Finally, Figs. 14(a) and 14(b) break down the cost to OS
generation and pre-processing time (bottom of the bar) and
size-l computation (top of the bar) for each method for PSize-l.
The figures also show (on the x-axis) the average sizes of
the complete OSs and the PPrelim-l OSs for l ¼ 10 and
l ¼ 50, respectively. For instance, the average size of the
complete OS is 707; whereas the average sizes of the
corresponding equi PPrelim-10 and PPrelim-50 OSs are 119
and 272.

Evidently, the preliminary OS generation is always faster
than that of the complete OS; for instance the PPrelim-5 OS's
size is approximately 10% of the size of the complete OS
and its generation can be done up to 2.5 times faster. Also,
2-LASPe is always faster at both phases (i.e., during OS
generation and pre-processing and during size-l calculation)
as at both phases more operations are required by LASP
(recall that during pre-processing, the apð:Þ of a node in
LASP corresponds is the path to the root, whereas in 2-
LASPe is the node with its parent only). The comparison of
Figs. 14(a) and 14(b) verifies again that sim relevance is more
demanding than equi relevance. In general as expected, the
OS size, l and sim relevance negatively affect the cost.

(a) equi DSize-l Author
(jOSj ¼ 707)

(b) sim DSize-l Author
(jOSj ¼ 707)

(c) equi PSize-l Author
(jOSj ¼ 707)

(d) sim PSize-l Author
(jOSj ¼ 707)

(e) equi DSize-l User
(jOSj ¼ 132K)

(f) equi PSize-l User
(jOSj ¼ 132K)

Fig. 11. Quality on DBLP and Googleþ.

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-18

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

The cost of the BF-l algorithm becomes unbearable for
moderate OSs sizes and values of l. For instance, although
using BF-l we could get results for l=5 (e.g., 16ms for the
Author RDS), we had to terminate the algorithm for l � 10 as

it exceeded 30min of running. In summary, the BF-l algo-
rithm is not practical at all whereas our greedy algorithms are
very fast and as we showed in Sec. 8.2, their results are
snippets of high quality. In addition, the use of preliminary
OSs and 2-LASPe is constantly a better choice over the
complete OSs and LASP respectively since they are always
faster with a negligible quality loss.

9. Conclusion

In this paper, we introduced the concept of object summary
and size-l OSs, we also investigated the effectiveness and
efficiency of two novel types of size-l OSs, namely DSize-l
OSs and PSize-l OSs. For this purpose, we employed two
types of nodes pairwise relevance, i.e., similarity and equal-
ity. Meanwhile, we proposed two efficient greedy heuristics
and a preprocessing strategy that restricts processing on only
a subset of the OS. Finally, we conducted a systematic ex-
perimental evaluation on the DBLP and Googleþ datasets
that verifies the effectiveness, approximation quality and ef-
ficiency of our techniques. The evaluation verified that the
two novel snippets are preferred by human evaluators over
nondiversified size-l OSs.7 The evaluation also verified
preference for results produced using sim relevance over

(a) equi DSize-l Author
(jOSj ¼ 707)

(b) sim DSize-l Author
(jOSj ¼ 707)

(c) equi PSize-l Author
(jOSj ¼ 707)

(d) sim PSize-l Author
(jOSj ¼ 707)

(e) equi DSize-l User
(jOSj ¼ 132K)

(f) sim DSize-l User
(jOSj ¼ 132K)

(g) equi PSize-l User
(jOSj ¼ 132K)

(h) sim PSize-l User
(jOSj ¼ 132K)

Fig. 12. Efficiency on DBLP and Googleþ.

(a) equi PSize-l Author
(Size-l ¼ 10)

(b) sim PSize-l Author
(Size-l ¼ 10)

Fig. 13. Efficiency (verying OS size).

(a) equi PSize-l Author
(jOSj ¼ 707)

(b) sim PSize-l Author
(jOSj ¼ 707)

Fig. 14. Efficiency (cost breakdown).

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-19

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

results produced by using equi relevance that was proposed in
Refs. 19 and 20.

Acknowledgement

The work of Zhi Cai was partially supported by the Beijing
Natural Science Foundation under grant number 4172004, and
Beijing Municipal Education Commission Science and Tech-
nology Program under grant number KM201610005022.

Appendix

References
1A. Turpin, Y. Tsegay, D. Hawking and H. E. Williams, Fast
generation of result snippets in web search, SIGIR (2007),
pp. 127–134.

2V. Hristidis and Y. Papakonstantinou, Discover: Keyword search
in relational databases, (VLDB) (2002), pp. 670–681.

3Georgios John Fakas, Automated generation of object summaries
from relational databases: A novel keyword searching paradigm,
DBRank, ICDE (2008), pp. 564–567.

4Georgios John Fakas, A novel keyword search paradigm in rela-
tional databases: Object summaries, DKE 70(2), 208 (2011).

5G. Cheng, T. Tran and Y. Qu, Relin: Relatedness and informa-
tiveness-based centrality for entity summarization, The Semantic
Web-ISWC (2011), pp. 114–129.

6M. Sydow, M. Pikula and R. Schenkel, The notion of diversity in
graphical entity summarisation on semantic knowledge graphs,
J. Intel. Infor. Syst. 10(2), 1 (2013).

7G. J. Fakas, Z. Cai and N. Mamoulis, Size-l object summaries for
relational keyword search, PVLDB 5(3), 229 (2011).

8G. J. Fakas, Z. Cai and N. Mamoulis, Versatile size-l object
summaries for relational keyword search, TKDE 26(4), 1026 (2014).

9G. J. Fakas, Z. Cai and N. Mamoulis, Diverse and proportional
size-l object summaries using pairwise relevance, VLDB J. 25(6),
791 (2016).

10A. Balmin, V. Hristidis and Y. Papakonstantinou, Objectrank:
Authority-based keyword search in databases, VLDB (2004),
pp. 564–575.

11G. J. Fakas and Z. Cai, Ranking of object summaries, DBRank '08,
ICDE (2009), pp. 1580–1583.

12R. Fagin, A. Lotem and M. Naor, Optimal aggregation algorithms
for middleware, PODS (2001), pp. 102–113.

13V. Hristidis, L. Gravano and Y. Papakonstantinou, Efficient ir-style
keyword search over relational databases, VLDB (2003),
pp. 850–861.

14Y. Luo, X. Lin, W. Wang and X. Zhou, Spark: Top-k keyword
query in relational databases, SIGMOD (2007), pp. 115–126.

15S. Gollapudi and A. Sharma, An axiomatic approach for result
diversification, WWW (2009), pp. 381–390.

16V. Dang and W. B. Croft, Diversity by proportionality: An elec-
tion-based approach to search result diversification, SIGIR (2012),
pp. 65–74.

17S. Cheng, A. Arvanitis, M. Chrobak and V. Hristidis, Multi-
query diversification in microblogging posts, EDBT (2014),
pp. 133–144.

18L. Wu, Y. Wang, J. Shepherd and X. Zhao, An optimization
method for proportionally diversifying search results, Adv. Knowl.
Discov. Data Min. 70(2), 390 (2013).

19L. Wu, Y. Wang, J. Shepherd and X. Zhao, Diverse and propor-
tional size-l object summaries for keyword search., SIGMOD
(2015), pp. 363–375.

20L. Wu, Y. Wang, J. Shepherd and X. Zhao, Diverse and propor-
tional size-l object summaries using pairwise relevance, VLDB J.
25(6), 791 (2016).

Paper Author0.3
0.1

ConfYear 0.2
0.2

0.3
0.3

Conference

0.7
cites

0
cited

(a) The DBLP GA

plusOnes

0.5 0.5

0.0

0.3

0.5
0.7

0.5

0.3

ownCircle

InCircle
create

0.5
followedBy

Circles

0.0

0.3

0.0

Activity

make
User

reactions

Shares

Comment

(b) The Google + GA

Fig. A.1. The GAs for the DBLP and GoogleþDatasets.

G. J. Fakas & Z. Cai ESCRI 2, 1750002 (2018)

1750002-20

E
nc

yc
lo

pe
di

a
Se

m
an

t.
C

om
pu

t.
R

ob
ot

. I
nt

. 2
01

8.
02

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n
03

/1
2/

19
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

	Object summaries for keyword search
	1. Introduction
	2. Object Summaries
	3. Size-l OSs
	3.1. Greedy algorithms
	3.2. Bottom-up pruning size-l algorithm

	4. DSize-l and PSize-l Snippets
	4.1. Diversity (DSize-l OSs)
	4.2. Proportionality (PSize-l OSs)
	4.3. DSize-l and PSize-l definitions

	5. Largest Averaged Score Path
	6. 2-LASPe
	7. Prelim-l Algorithms
	7.1. PPrelim-l

	8. Experimental Evaluation
	8.1. Effectiveness
	8.1.1. Precision and recall
	8.1.2. Usability test

	8.2. Quality of snippets
	8.3. Efficiency

	9. Conclusion
	Acknowledgement
	Appendix A.
	References

