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Abstract. In this paper, we propose Geo-Social Keyword (GSK) search, which
enables the retrieval of users, points of interest (POIs), or keyswibralt sat-
isfy geographic, social, and/or textual criteria. We first introduce &igdiGSK
framework that covers a wide range of real-world tasks, includingridement,
context-based search, and market analysis. Then, we presenttimerete GSK
queries: (i) NPRU that returns the tdpusers based on their spatial proximity
to a given query location, their popularity, and their similarity to an input et o
terms; (i) NSTP that outputs the tdpPOls based on their proximity to a user
v, the number of check-ins by friends of and their similarity to a set of terms;
(iii) FSKR that discovers the top-keywords based on their frequency in pairs
of friends located within a spatial area. For each query, we developcagsing
algorithm that utilizes a novel hybrid index. Finally, we evaluate our fraamkw
with thorough experiments using real datasets.

1 Introduction

The rising popularity of social networks and smart-phoresled to the development
of techniques for personalized search and targeted askertint that combine social,
geographic and textual criteria. As an instance of socidltartual fusion, social net-
works, such as Facebook, permit the promotion of productotmected users that
share common interests, e.g. the advertisement of a rotikdie® a group of friends
that like rock music [1]. As an example of geographic anduakintegration, Web
search engines, such as Google, allow search for Pointst&@gbt (POIs) that match
some description and are near the query location , e.g.n&3ki restaurants nearby”
[2]. Finally, Geo-Social Networks (GeoSNs), such as Fouase, combine geographic
and social aspects by enabling users to check-in at POIspublish their current lo-
cation to friends. Moreover, advertisers can send GroufikiNeffers to users in their
vicinity to attract them, as well as their friends [3].

Similar combinations of social, geographic and textuakcia have been investi-
gated in the research literatureKigyword search in social networks focuses of queries
that seek groups of users forming a particular social siracte.g. clique), and their
members’ profiles cover a set of input terms [16, 13, 14]Siatial keyword search
queries return POls that satisfy various spatial (e.ggeanearest neighbor) and tex-
tual (e.g., text similarity) constraints [24, 20, 11, 1018]. iii) GeoSN queries output
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individual users, or groups of friends, that exhibit somatisph and social properties,
e.g., the closest clique of friends to a query point [22, 5,17, 19].

All the above cases consider only two out of the three catddcusing on a single
output type (e.g., users or POls, but not both). On the othadhwe introducé&eo-
Social Keyword (GSK) search, a class of tdpgueries that combine all spatial, social,
and textual attributes, and may return users, POIs or kejavalk/le present three con-
crete GSK queries: ijop-k Nearest, Popular and Relevant Users (NPRU) that, given a
query locationy and a set of term$,, outputs the tog: users based on their proximity
to ¢, their social connectivity, and the similarity of their [ites toT,; ii) Top-k Near-
est Socially and Textually Relevant POIs (NSTP), which, given a user and a set of
termsT,, returns the tog: POIs based on their proximity tg the number of check-ins
by friends ofv, and their similarity tdl7,; and iii) Top-k Frequent Social Keywords in
Range (FSKR) that discovers the topkeywords based on their frequency in pairs of
friends located within a geographic area.

Each query is suitable for a different type of task, inclgdauvertisement, context-
based search, and market analysis. For instance, NPRU beulded by a restaurant
to send promotions to nearby users, who are well-connectgdhave expressed inter-
est in its cuisine type. Conversely, a user could issue anfN@Jery to locate nearby
restaurants of a specific type that are ’liked’ by his frierdsally, FSKR could identify
trends or word-of-mouth effects in a geographic area, uiadgrequency of keywords
shared by friends.

For each query, we provide a query processing algorithmutiiletes theGSK Index
(GSKI), a novel hybrid structure that stores users and Afaksed on spatial, social, and
textual attributes. GSKI is a lightweight multi-level gtidat supports efficient updates.
Summarizing, our contributions are:

— We define GSK search as a general framework for retrievaleotfdp+ users, POls
or keywords using various types of criteria.

— We present the GSKI, a hybrid structure for indexing usecsR@Is.

— We propose three GSK queries and the respective procedgorglams that utilize
the GSKI.

— We conduct a thorough experimental evaluation on real detas

The rest of the paper is organized as follows. Section 2 oses/related work.
Section 3 formalizes the GSK problem and introduces thergéframework. Section
4 presents the GSK Index. Sections 5 to 7 propose the GSKeguaard the correspond-
ing query processing methods. Section 8 contains the erpatal evaluation. Finally,
Section 9 concludes the paper with directions for futurekwor

2 Related Work

We overview (i) keyword search in social networks, (ii) splakeyword search, and
(iif) GeoSN queries.

Keyword search in social networks. Although, there has been extensive work on
keyword search for general graphs, here we focus on sodiabris. Lappas et al. [16]
propose theTeam Formation (TF) query: given a weighted social graph and a set of



termsTy, TF returns a subgraph of users, whose textual descriptiores E\and their
diameter (i.e., maximum shortest-path distance betwegitvamnodes) is minimized.
The authors also devise a variant, where the subgraph mashbemum spanning tree,
and show that both problems are NP-Complete. [13] ext&Rdsy additionally seeking
a team leader, i.e., the member of the resulting group wighntinimum total social
shortest-path distances from all members. Finally, [14ppses the-cliques query:
given a weighted social graph and a set of teffipsreturn a sugbraph of users that
coversTy, and has diameter no larger tharin the above methods, textual information
is stored in inverted files and the graph is kept in adjaceisty. |

Spatial keyword search. Four types of spatial-keyword queries have received partic
ular attention in the literature [8] namely, tBeolean Range (BR), the Boolean £-NN
(BkNN), the Spatial Aware Top-k text retrieval (SATopk), and theSpatial Group Key-
word (SGK) query. Given a spatial regioR and a set of term$;,, BRreturns all POls

in R, whose textual description contains all termsfin[24, 20]. BkNN outputs thek
nearest POls to a query poipteach of which covers all the query terms [11]. Given
q, T, and a positive integek, SATopk returns a list ofk POIs ranked based on their
spatial proximity tog and textual similarity td/y, [10]. Finally, SGK discovers a set of
POls that collectively cover the query terms and either thne ef their distances to the
query location is minimized [7], or the maximum distancen®n any two POIs in the
group is minimized [18]. A recent work [21] introduces t8acial-aware top-k Spatial
Keyword (SkSK) query, which enhances personalized spatial-keywordtkear addi-
tionally taking into consideration the social connecyiaf the query issuer to all users,
who have liked or recommended the POls.

Spatial-keyword indices can be broadly classified accgrthrthe spatial and tex-
tual structures employed. They are usually based on thesR-dmd its variants, where
each minimum bounding rectangle (MBR) keeps the textuatimétion of the POls lo-
cated within its bounds. Specifically, MBRs in [10, 7] utdimverted files, while in [11,
23] use bitmaps. Grid-based spatial-keyword structuresmpose the space into cells;
each cell has a unique id according to a global order (e.dbeHicurves [9]). Then,
inverted files are primarily used for indexing the cells labse the textual description
of the POls located within their bounds [15, 20]. Indicesduhsen trees are in general
more efficient than grid-based structures [24], but thetaite easier to maintain. The
Social Network-aware IR-Tree [21] is an R-Tree, where each node also contains a set
of users relevant to the POls indexed by the subtree rootéa atode; contrary to its
name, it does not index social information (i.e., user catiogs).

Geo-Social Networks GeoSN queries return users, or groups of users, that satiafy
tial and social criteria. Given a locatignand two positive integerk andm (k < m),

the Socio-Spatial Group query outputs a group of users, such that the total distance
of the users t@ is minimized, and each user is connected to at leastk other group
members [22]. Given a locatigrand two positive integers, k, theNearest Star Group
query [5] returns thé nearest subgraphs of users, such that each subgraph (i.e., star)
has a user, who is socially connected to all users. Givenravygiee k-Geo-Social Cir-

cle of Friends query [17] finds a group of + 1 users that containsandk friends with
small pairwise social distances, so that the diameter aftbep is minimized. Finally,



[19] introduces thé&ocial and Spatial Ranking query, which given a uset, reports the
top-k users based on their spatial proximity and social connigctiv v.

Most GeoSN approaches maintain separate structures fep#il and social at-
tributes. For instance, Liu et al. [17] store the social grapan adjacency matrix, and
employ the R*-Tree for spatial indexing. Similarly, [5] ssadjacency lists and a regu-
lar spatial grid, respectively. On the other hand, Yang .22l propose a hybrid index
that constructs an R-tree while ensuring a specified dedreenmectivity among the
users within the same node.

3 GSK Query Framework

Our setting consists of a social graph network and a set o6 Plie social network
is modeled as an unweighted, undirected grépk= (V, E), where a node € V
represents a user and an edgeu) € E indicates the friendship betweerandu € V.
Each usew € V may be associated with textual and spatial information riéyatesent
his preferences and his most recent location, respectizath POp € P has a spatial
location, a textual description and a set of udéythat have checked-in atin the past.
T denotes a set of terms/keywords; specifically(resp.T},) is the set that appears in
the preference of user(resp. the description of PQ).

Figure 1 depicts a running example of a social network with ltations of 10
users as grey points, and the incident edges as their setadbns. The black squares
represent the location of 4 POls. Next to each usand POlp is the corresponding
set of termsT, and7,, e.g.,{c, f} for v, and{c, e} for p;. Moreover, the list below
each POI (e.g.jv2, v4, vs, vg] fOr p1) represents the users that have checked-in there.
Depending on the application, the setting may vary; e.g,téxtual information of
users may correspond to their query history or profile daist¢ad of preferences),
may denote the current (instead of all) check-ing, atc.

Geo-Social Keyword (GSK) search constitutes a family oftajueries that return
results of typeRT = (C,1), whereC' denotes the object class (i.&7, P or T) and!
represents the cardinality. For exampl’ = (V, 3) denotes that the output contains
k groups of 3 users each, whered¥ = (P, 1) signifies that the output consists of
k individual POls. Given a GSK quermy, each objecb of type RT (e.g., a group of
3 users, or a single POI) is assigned a geograghie), social f;(0) and a textual
ft(0) score. In generalf, (o) depends on the proximity af to ¢, fs(o) on the social
connectivity ofo, andf: (o) on the similarity between the terms @andg.

The total score of an object is obtained by combining theglames using a ranking
function F'. We implementF’ as a weighted combination of the partial scores, i.e.,
F(0) = ag-fy(0)+as- fs(0)+ay- fi(0), whereng, oy, oy are non-negative real numbers
such thaty, + ;s + a; = 1, but any monotonfefunction can be used. A criterion (e.g.,
textual) can be omitted by setting the corresponding weglt,«;) to zero. Moreover,
in some cases we may only be interested in objects thatysat&ft of constraint§’V,
i.e., POIs in a geographic area, or users who have certamaaieaistics (e.g., males
above 30 years old). Finally, we define a GSK query as follows:

1 F should satisfy the conditiovio, o’ : f,(0) > f,(0') A fs(0) > fs(0') A fi(0) > fi(o)) =
F(o) > F(0).
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Fig. 1. Running Example

Definition 1. Given a positive integer k, a result type RT', functions f, fs, f:, ', and
a set of constraints C N, a GSK query returns the & objects of type RT that have the
highest scores according to £ and satisfy all constraintsin C'N.

By employing different combinations of result types, rarkifunctions and con-
straints, we can devise a wide range of GSK queries. In tinempave will present three
diverse queries that retrieve individual users, POls agu/keds. All the queries utilize
the index of the next section. Table 1 contains the frequanbsls.

Table 1.Basic notations

Notation |Definition

v User in GeoSN, i.ey € V.

P Point of interest, i.ep € P.

N, Friends of usep.

T, (Tp) Set of terms of uses (POl p).

T, Set of query terms.

Vi Set of users that checked-inzat

[|v, q|] Euclidean distance of userto pointg. Similarly forp, i.e.,||p, q||.

lle, qll,,:r,  [Minimum Euclidean distance of 2D rectangléo 2D pointg.
mazadis: | Maximum possible Euclidean distance between any two points.
deg(v) Number ofv’s friends, i.e,| N, | = deg(v).

MAT deg Maximum number of friends in the graph.
TS(T1,T>)|Normalized textual similarity between term s&tsandT>.




4 Geo-Social Keyword Index

The Geo-Social Keyword Index (GSKI) stores users and POIs based on their geograph-
ical, social and textual attributes. Given a granularittdag and a height parametér
GSKI partitions the geographical space igtox ¢" equally sized leaf cells. Each leaf
cell lc contains:

a rectangleR,.. that represents the area covereddy

a list of userd/. and a list of POIg?,. that lie in R;..,

the maximal degre®,. of any user inRk.,

inverted files/'V;. and P;., consisting of lists of keywords appearing in the prefer-
ences of users and in the descriptions of POIRjn respectively. Lists are sorted
by theimpact of keywords based on thesine-normalized tf-idf [25], and

— a bloom filte? B,. of the union of all users checked-in at POISRy., i.e B, =
bloom filter of Vp.

pEP.

Next, a hierarchical grid of heiglit is constructed in a bottom-up fashion, where
each intermediate cell points 48 cells at the lower level that lie inside its spatial extent.
Every intermediate cellc keeps only a small amount of information summarizing its
children cells. Specificallyic is associated with a rectangle,., maximum degree of
users inR;., namelyD;., and bloom filterB,.. Additionally, for each term that appears
in users or POls located within the bounds/tf, ic keeps the term’s maximum textual
impact in setsSV;. andS P, respectively.

Figure 2 illustrates the GSKI and Table 2 shows the corredipgncell contents
for our running example, assuming = 2 andh = 2. Leaf cell C0, is a child
of C'1; 1, which in turn is a child ofC2, ¢. C02 > contains users;, v, and POlp;
in its spatial extent. Consequently, as elaborated in thetido last row of Table 2,
Dco,, = 2 = deg(v1) = deg(vz), IVco, , Stores terms, f, since they appear iy ’s
anduvs’s preferences, anfiPco, , keeps terms, e occurring inp;’s description. Each
term is associated with ampact value [25] in the range [0,1]3¢o, , contains users
v, V4, V5, Vg WhO checked-in gp;. Intermediate cel’1, ; aggregates the information
of its ChildrenCOQQ, 00273, 00372, and00373. DCl1,1 =5 = deg(v4), sincewv, is
located inC0y 3. C'11 1 keepsSVei, , andSPcq, , with the terms that appear in the
children, namely{a, ¢, f} and{a, ¢, e}, respectively. FinallyBc1, , contains the union
of Bco, , andBco, , (C02,3 andC03 > do not contain POls).

To enable effective pruning during query processing, th&i38eserves mono-
tonicity across the height of the hierarchical grid, i.ssw@ming a monotone function
F, the overall score of an intermediate celtonstitutes an upper bound for the score of
any user or a POl withi®;.. Moreover, since the GSKI only keeps concise aggregated
data at the intermediate levels, the size of the invertedfilenon-leaf cells is smaller
than that of the original inverted file. Finally, we chose &ldrased structure because
grids in general are usually significantly faster that Resréor highly dynamic settings
[12] such as ours, where there are numerous location upfilatesisers.

2 A bloom filter is a space-efficient probabilistic data structure that is usedstavteether an
element is a member of a set [6].
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Table 2. GSKI Contents
Cell ¢ V.75V, IP./5P, D. B.
C20,0
Cloo (c,0.71), (d, 0.71), (e, 0.71) 1
CO(),[) 0
C01,0 c: (v7,0.71) ,e: (v7,0.71) 4
000,1 0
C01 1 c: (v3,0.71) ,d: (vs3,0.71) 4
Cli,0 (b,0.71), (d,0.71) , (e, 0.71) (e,0.71), (f,0.71) 3 {v1,v6, Vs, V9}
C0s.0 e: (ps,0.71), f: (p4,0.71) | O {v1,v2,v6,v8}
C03,0 d: (vs,0.71) , e: (vg,0.71) 3
C02,1 0
C03,1 b: <’U5,0.71>,€ (v5,0 71> 3
Clo (a,0.71), (b, 1.0) , (¢,0.71) (a,0.71), (f,0.71) 1 {va,v7,v9,v10}
C0o,2 a: (p2,0.71), f: (p2,0.71) [ O {va,v7,v9,v10}
00112 0
C0p 3la: (v10,0.71),b: (vg, 1.0), c: (vig, 0.71) 1
C01.3 0
Cli (a,1.0), (c,0.71) , (f,1.0) (a,0.71),(c,0.71) , (e, 0.71)| 5 [{va2,vs,va,vs5, v}
C0s o a: (vy,1.0), f: (v2,1.0) c: (p1,0.71) ,e: (p1,0.71) | 2 {va, va,v5,v6}
C03,2 0
C0s2,3 c: (v4,0.71) , f: (v4,0.71) 5
C03,3 a: (vs,0.71), f: (vg,0.71) a: (p3,0.71) ,c: (p3,0.71) 1 {vs, vs}

5 Top-k Nearest, Popular and Relevant Users

A Top-k Nearest, Popular and Relevant Users (NPRU) query returns the top-users
based on their spatial proximity to a locatigntheir social connectivity, and their tex-
tual similarity to an input set of ternis,. NPRU is useful for advertisement and pro-
motion purposes. For instance, consider a restaurant owme@mwishes to send lunch
coupons. Promising targets are users that (i) are neardteurant, (ii) are highly con-
nected, and (iii) express preference to the restauramtés dy food.

In our framework, the output type of NPRU BT = (V, 1), i.e., the result con-
sists of individual users, an@’N = (), i.e., there are no constraints on the users to
be retrieved. Regarding the geograplfigv), social f,(v) and textualf;(v) scores
of each usew € V, there are several alternatives. In our implementation,sete
folv) = 1— M, wheremax g denotes the maximum Euclidean distance in

maxdi;st

the data space. Intuitively, the spatial score of a usgecreases as his Euclidean dis-



tancelv, ¢|| from ¢ increases. The social score ofis defined asf,(v) = %,
eg

wheredeg(v) is the number ob’s friends, andnaz ., is the maximum degree of any
user in the network. The textual scofgv) is thecosine-normalized tf-idf similarity
TS(T,,Ty;) [25] between the term$,, of v and those irll;,. All partial scores are in
the range [0,1]. The total score ofis F'(v) = ay - f4(v) + s - fs(v) + ¢ - fi(v), as
discussed in Section 3.

Consider, for instance an NPRU query with= 2, ¢ = p1, T, = {c,e} and
g =g = = % in the running example of Figure 1, e.g., a Chinese restagan
wishes to discover the top-2 users in its vicinity, that haaaay friends and at the same
time have matching keywords e (Chinese, Restaurant). The best usetidecause
both keywords: ande are in his preferences. The top-2 usewjisvith keywordc. Note
thatv, out-ranksvs, which is slightly closer tp; and containg, because he has higher
degree (5 as opposed to 4 fgy). Although users; andwv, are the nearest toy, they
are not in the result because neither contains keywarck; accordingly, theirf, score
is zero.

Processing NPRU queries is based on the branch-and-bouadigra using the
GSKI. Specifically, a priority heal maintains visited cells and users along with their
score according td'. The score of a celt takes into consideration (i) the minimum
Euclidean distance of the cell tg (ii) the maximum degree of any userdnand (iii)
the maximum textual similarity of the queried terms amorthst preferences of the
users inc. This guarantees that the scoreca an upper bound for the score of child
cells and users within its extent. Consequently, if thesodr: does not exceed that of
the top4th user, therr can be safely pruned.

Figure 3 illustrates the pseudo-code of NPRU processintially, the algorithm
adds GSKI's root cell tdf (Line 2). Then, in an iterative manner, it removes the entity
with the highest score fror/, namelye, and i) if e is an intermediate cell, then it adds
all its children cells toH (Lines 5-7), or ii) if e is a leaf cell, then it adds all users
within e’s spatial extent tdd (Lines 8-10), or iii) ife is a user, it adds him to the result
set (Lines 11-12). The algorithm terminates when the resltontaing users (Lines
13-14). The cells and users remainingfinhave score at most as high as that of the
k-th result and, hence, can be ignored.

Table 3 shows the heap state during the execution of the draery:k = 2,
q=p1., T, = {c.e} anday = o, = oy = §, using the GSKI contents of Table 2.
Heap entries consist of a cell or a user, and the correspgrstiore according t@".
Cells and users added 6 are shown in bold. First, the algorithm inserts the root of
GSKI in H. At iteration 1, it removes the root cell and adds its childedong with
their scores td7. Next, the intermediate cell with the highest scargy o, is removed
and its child leaf cell§C0¢ o, C01 9, C0¢,1,C01 1} are added tdd. Similarly, C0y ¢ is
removed at the next iteration and useiis added tad. Next, intermediate cell'l; ; is
de-heaped and its child leaf nodes are en-heaped. Then;iseemoved and becomes
the top-1 result. The algorithm continues in the same maanérterminates after the
6th iteration, when the top-2 user is de-heaped.



Input: Social GraphG = (V, E), integerk, locationg, set of termdly,, weightsay, as, a:
Output: Top-k users according t&’

1. DefineH as an empty heap ¢fSK I cells sorted according to their scores in decr. order
2. Add the root cell of#SKI to H
3. While H is not empty
4. e = top entity of H // it also removes from H
5. If eis an intermediate cell adfSK T
6. For each childc of e
7. Add toH cell e with scoreay - (1 — J=min) 4 o, - -Bee 4 ay - TS(T., T,)
8. Else If e is a leaf cell of GSK T '
9. For each usev € V.
10. Add toH userv with scoreay, - (1 — L2ty 4o, . %(:e)g +a; - TS(T,, Ty)
11. Else/l eis auser
12. Addeto R
13. If |R| = k then stop the execution
14.Return R
Fig. 3. NPRU Algorithm
Table 3.Heap of NPRU
Interation # Heap Contents

0 <C20’0, 00)

1 (Clo’o, 0.90), (011,1,0.81), (011,0,0.71),(010,1, 0.51)

2 (C01,0,0.85), (C1;,1,0.81), (C1y,0,0.71), (C0;,1,0.71), (C1,1,0.51), (C0op,1,0.24),
(C0p,0,0.21)

3 (C11,1,0.82), (v7,0.80), (C11,,0.71), (C01,1,0.71), (Clg,1,0.51), (C0o,1,0.24),
(C00,0,0.21)

4 (’U7,0.80>, (CO2’3, 0.75), <C11,0,0‘71>, <C01,1, 0.71), <Cl(]'1,0.51>, (002,2,0‘46),
(C03,3,0.33), (C03,2,0.30), (C0p,1,0.24), (C0p,0, 0.21)

5 (C02,3,0.75), (C11,0,0.71), (C01,1,0.71), (Clo,1,0.51), (C02,2,0.46), (CO3,3,0.33),
(C03,2,0.30), (C09,1,0.24), (C0p,0, 0.21)

6 (1}4,0.72), <C11,U,0.71>, <C01,1,0.71>, <Clo,1,0.51>, <COzy2,0.46>, <C()373,0.33>,
(C03,2,0.30), (C0g,1,0.24), (C0¢,0, 0.21)

6 Top-k Nearest Socially and Textually Relevant POls

Given a userw and a set of term§,, a Top-k Nearest Socially and Textually Rele-
vant POIs (NSTP) query returns the top-POls based on their proximity to, the
textual similarity of their descriptions tf,, and the number af’s friends that checked-
in. NSTP enables location-aware, socially-aware, andjotext-aware search. For in-
stance, consider a user who wants to visit a restaurant. NS{IE locate nearby restau-
rants offering cuisine similar to the user’s preferences #re also visited (or ’liked’)
by his friends.

The output type of NSTP query BT = (P, 1), i.e., the result consists of individual
POIs, andCN = 0, i.e., there are no constraints on the POls to be retrievEde

8 Additional constraints in this case could restrict the topOls to be in a certain area, or
enforce certain properties (e.g., restaurant must be open afier)10



geographic and textual score definitions are similar to NARU f,(p) = 1 — Mvopll

maxq;st

and f;(p) is based ortosine-normalized tf-idf between,, and7,. The social score is

defined as;s(p) = |N|11,va\|/,,\ , Where setV,, consists ofu’s friends (i.e.,|N,| = deg(v)),
andV,, contains the ids of the users who checked-in &the partial scores are combined

by the linear functior¥’ also used in NPRU.

For example, consider an NSTP query with= v7, & = 2, T, = {c, e}, and
g = 0y = p = % using the running example, e.g., usersearches for two nearby
Chinese restaurants, ¢) that have been visited by many of his friends. The best POl is
p1 since it is relatively close to;, contains both queried terms, and it has been visited
by 3 of his 4 friends s, v4, vg). The top-2 POl ig4 because it is the closest POlig,
contains terne, and was visited by two af;’s friends @3, vg). POlsp, andps are not
in the result set since they are far fram, are not relevant t@' (only p; contains one
of the queried terms), and are not popular amoyig friends (each is visited by only
one friend).

NSTP query processing is similar to NPRU. Specifically, tigedthm uses a max-
heap to store cells and POls sorted in decreasing orderiostiares. The score of a cell
cis based on: i) the minimum distanceadb v, ii) an upper bound for the number o8
friends that checked-in at any POI withinand iii) the maximum textual similarity &f
to the descriptions of the POls inFor the computation of (ii), the algorithm examines
if each friend ofv is in the bloom filter ofc. Bloom filters may falsely indicate the
presence of a user. However, although false positivesaserthe score af, they do
not affect correctness because the scoreisfalways an upper bound (albeit, in some
cases, loose) for that of any child cell or POldnThe algorithm terminates after it
retrievesk POIls from the priority heap.

Consider again the example query with input= vz, k = 2, T, = {c, e}, and
Qg =g =y = % using the GSKI contents of Table 2. Table 4 shows the statteeof
heap at each iteration. Starting from the root cell, theritlgm retrieves the top-1 POI
p1 atiteration 3. Then, it continues until iteration 6, whedi#icovers, and terminates.

Table 4.Heap of NSTP

Interation # Heap H Contents

0 <C2070, OO>

1 <011,1,0.75), (011,0,0.55), (010,0,0.33), (010,1,0.28)

2 {C02,2,0.75), (C11,0,0.55) , (CO3,3,0.44), (C10,0,0.33), (Clp,1,0.28),
(C03,2,0.19), (C02,3,0.15)

3 (p1,0.75), (C11,0,0.55), (C03,3,0.44), (Cl¢,0,0.33), (Clo,1,0.28),
(C03,2,0.19), (C02,3,0.15)

4 (C11,0,0.55), (C03,3,0.44), (Clo,0,0.33), (Clo,1,0.28), (CO3,2,0.19),
(C02,3,0.15)

5 {C02,0,0.55), (C03,3,0.44), (C1o,0,0.33), (Clg,1,0.28), (C02,1,0.28),
(003,0,0.25), (003,1,0.23), (C03,2, 0.19), <C02,37 0.15>

6 (p4,0.59), (C03,3,0.44), (Cl0,0,0.33), (Clo,1,0.28), (C02,1,0.28),
(C03,0,0.24), (C03,1,0.23), (C03,2,0.19), (C02,3,0.15)




7 Frequent Social Keywords in Range

A Frequent Social Keywords in Range (FSKR) query returns the topterms based on
their frequency in pairs of friends located within a spatisdaS R. FSKR allows the
discovery of trends or word-of-mouth effects. For instari€8KR on textual content
derived from Twitter/Facebook posts can reveal topicsdhattrending among friends
in a geographic area. This information can be then utilizedusinesses towards social
media marketing.

The output of FSKR query i®T = (7,1), i.e., the result consists of individual
terms. In addition(C' N contains the constraint that valid terms must appear jointl
the preferences of friends ifiR. FSKR does not apply geographic or social scores;
instead, the total score of a ternis based solely on its frequency among friends, i.e.,
F(t) = fi(t) = {(v,u) € E/t € T, Nt € T, Av,uinside SR}|, whereT,, (resp.
T,) denotes the terms associated witfresp.u). Note that an edgév, u) contributes
2 to the score of; once per incident userandwu. This does not affect the ranking of
the top# results.

Consider, for instance, the FSKR query with= 2 and an are®& R represented by
the dashed-line rectangle in Figure 1. The top-1 termvgith scoreF'(c) = 6, since it
appears in 3 pairs of friends within the range, i(es, v4), (vs, v7), and(vg, v7). The
top-2 term can be either(vg, v7), ord (vs, vg), both with score 2. The remaining terms
in SR (a,d, f) are not shared by any pair of friends.

FSKR query processing is performed in two steps: first, fergtermt in SR, a list
PLJt] is created with the users (i5iR) containingt; then, the scoré’(¢) of each term
t is computed by examining the connections of users appearifd.[t]. Specifically,
the contribution of each € PL[t] to F(t) is |N, N PL[t]|, whereN, is the set ofv’s
friends. Letbest ... be the score of the current tdgh term. The upper bound score
of any (not-yet-examined) terms |PL[t]| - (|PL[t]| — 1), when all users containing
form a clique. Consequently, [PL[t]| - (|PL[t]| — 1) < bestscore, thent can be safely
pruned. Based on this observation, FSKR examines termscieasng order of their
list sizes, until the first term that can be eliminated by ftper bound score.

Figure 4 elaborates the procedure. The algorithm firstensds the non-empty leaf
cells of GSKI that intersect with the spatial ran§&. For each keyword in the in-
verted lists of these cells, Lines 3-13 gener&®|t]. Next, the terms are sorted in
decreasing order 4P L[t]| size. For each termy Lines 18-20, compute the scoreiof
and updatéest ... accordingly. The algorithm terminates at the first term ftuick
|PL[t]| - (|PL[t]] — 1) < bestscore (Lines 16-17), and returns the tdpset (Line 21).
Unexamined terms cannot be in the result set, and are pruned.

We describe the algorithm using our running example of FEdurwherek = 1
and the spatial rang&R is depicted as a dashed rectangle. Initidibt ;... = 0. The
terms associated with users #? area, ¢, d, e, f with lists PL[a] = {v1}, PL[c] =
{vs,v4,v7}, PL[d] = {vs,vs}, PL[e] = {vs,v7} and PL[f] = {va,v4}. FSKR it-
erates over the lists in sorted order, starting frantt computes PL[c] N N,,| = 2,
|PL[c]NN,,| =2, |PL[c]JNN,,| = 2,andF(c) = 6. Sincek = 1, it setshestscore = 6
and retrieves the second most frequent keywor@he upper bound score feris 2,
which is belowbest ... Consequently, the algorithm stops and outptas the top-1
result.



Input: Social GraphG = (V, E), integerk, spatial rangeS R
Output: Top-k terms according t@”

1. Initialize list PL as an empty list of setd¢stscore = 0
2. SetC = all non-empty leaf cells in GSKI that intersect wiftiR
3. Foreachcelc e C

4. For each termt € IV,

5. Occur; = posting list oft in IV,

6. If t appears for first time

7. PL[t] = {0}

8. Else

9. If R coverse

10. PL[t] = PL[t] U Occury

11. Else

12. Occury varia = Exclude fromOccur; all users not inSR
13. PL[t] = PL[t] U Occury vaiid

14. SortP L according to sets’ sizes in decreasing order
15.For each termt € PL
16. If |[PL[t]|- (|PL[t]| — 1) < bestscore

17. Exit For Loop
18. For eachusep € PL[t]
19. Score; = Scores + [Ny N PL[t]|

20.  bestscore = k" highest score
21.Return the terms with the: highest scores

Fig. 4. FSKR Algorithm

8 Experimental Evaluation

Section 8.1 presents the real datasets, Section 8.2 cergajualitative evaluation of
the proposed queries, and Section 8.3 evaluates theirpexrfice experimentally.

8.1 Datasets

We use two real datasets obtained frgp [4] that consist of users and POls located
in Las Vegas (LV) and Phoenix (PX). In particular, each dettétscludes: i) a social
graph, ii) latest and past user check-ins, iii) user prefegs, iv) POI locations, and v)
POI descriptions. Table 5 summarizes the characteristit¥ and PX. Note that LV
contains more users in a smaller geographic area, whosiudiiin is skewed. Users
and POls in PX are distributed more uniformly.

8.2 Visualization

We qualitatively evaluate the proposed queries using LYhérfollowing visualizations,
users and POls are depicted as grey points and rectangdpsctively. Query points
and top# results are colored black, and each points to an informédiole that presents
their parameters and partial scores.



Table 5. Datasets

Statistic Lv PX
V| 40,297 30,056
Avg. Degree 9.66 541
Max. Degree 2451 1246
Avg. |T| 161 166
|P| 12,773 16,154
Avg. |V 14.98 8.89
Avg. |T,| 5.35 9.7
Area 37km x 46km|71lkm x 87km
Max. Dist 60km 112%km

Top-k Nearest, Popular and Relevant UsersFigure 5 illustrates the results of an
NPRU query issued by a Mexican bar, wh@tg= {mexican, alcohol,bar}, k = 3
anday, = a; = ap = % The top-1 user is the closest to the query point, the most
popular and the most relevant 1§. Although the top-2 user is farther than top-3, he
receives a better score because he has a higher degree géfhigences are more
similar to7},.
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Fig. 5. Top-3 Users in NPRU

Top-k Nearest Socially and Textually Relevant POIsFigure 6 depicts the results of
an NSTP query issued by a userwho searches for 3 nearby POls that contain terms
"mexican, alcohol, bar” and have been visited by his friends (= a; = 0.25 and

as = 0.5). The top-1 bar is 400 meters away frammand has been visited by onew$
friends. The top-2 bar is 1.%3» far from v, and has also been visited by one friend.
Note that the top-3 bar has the highest textual similarity,itas relatively far, and has
not been visited by any af’s friends.

Frequent Social Keywords in RangeFigure 7 visualizes the results of an FSKR query,
where a dashed-lined rectangle represéfftsandk = 1. The top-1 keyword fbod”

is shared among 9 pairs of friends, connected by the boldseddmee remaining edges
denote social connections of userssiR.
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Fig. 7. Top-1 Keyword in FSKR

8.3 Performance

The query processing algorithms were implemented in C++euhthux Ubuntu, and
executed on an Intel Xeon E5-2660 2.20GHz with 8GB RAM. Alladand indices are
stored in the main memory. The social graph is kept as a diteof adjacency lists,
one per user. The reported times are the average of 20 quecytéons for each of LV
and PX. Table 6 includes the tested value ranges for the quehgystem parameters
in our setupy corresponds to the radius of the circular spatial rafi§eof FSKR.
Geo-Social Keyword Index.Figure 8 studies the effect of GSKI granularifyon the
running time of NPRU, NSTP, and FSKR using LV, for= 4, £ = 16, |T,| = 3, and
r = 3km. For granularity up to 5, the running time of NPRU and NSTPrelases with
g. Since the cells cover smaller areas, the aggregate infammstored in the cells is
more accurate, and thus the algorithms visit fewer cells. MWthe granularity exceeds



Table 6.Query and System Parameters
Parameter|Default Range

k 16 |4,8, 16, 32, 64
T, ] 3 | 1,2,3,4,5
g 5 3,4,5,6

7 (km) 3 | 1,2,3,4,5

5, the GSKI becomes less effective because the heaps in NRRBIETP maintain
numerous cells, i.e., each intermediate cell has fanout 36 execution time of FSKR
increases slightly witly. Recall that the first step of FSKR creates the occurrente lis
of terms inS R by merging the inverted files of the cells that intersect v#ith. Con-
sequently, the CPU time grows as the algorithm merges meeted lists, but the
impact is negligible. In the remaining experiments, wegset 5 because it minimizes
the execution time of NPRU, NSTP, and it marginally affecs<R.

NPRU
10000 1 NSTP ==
FSKR s

1000
100
10

3 4 5 6

g9
Fig. 8. Effect of GSKI Granularity (LV Dataset; = 4)

Time (ms)

Table 7 assesses the total construction time of GSKI indiceter the setup of
Figure 8 in both datasets. In the most challenging settieggi= 6 andh = 4 (1.6M
leaf cells), GSKI needs only 45 seconds for both dataset® stronly keeps concise
aggregated data at the intermediate levels.

Table 7. GSKI Construction Time

Granularity g|Height h|# Leaf cells|LV Time (sec)PX Time (sec
3 4 6561 10.2 8.7
4 4 65536 13.3 11.6
5 4 390625 16.6 14.7
6 4 1679616 23.7 21.3

Top-k Nearest, Popular and Relevant UsersFigure 9(a) presents the query time of
NPRU as a function of the result sizein LV and PX, for|T;| = 3. In both datasets,
the cost increases with because the algorithm retrieves more users from the priorit
heap, and thus performs more iterations. NPRU is faster ibéPause it contains rela-
tively few users, who are rather uniformly distributed. fiéfere, the cells contain more
accurate information that leads to better pruning.
Figure 9(b) plots the running time versus the number of gaeterms, i.e.|T,|, for
k = 16. In both datasets, the cost increases Wii}j as the algorithm requires more



computations to calculate the textual similarity of eadited cell or user. In addition,
when|T,| increases, more cells become textually relevant to theygueducing the
pruning power of the algorithm.
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Fig. 9. Query Time for NPRU

Top-k Nearest Socially and Textually Relevant POIsFigure 10(a) shows the exe-
cution time of NSTP versus the result sizeén LV and PX, for|T;,| = 3. Similar to
NPRU, the running time increases withsince the algorithm executes more iterations.
Compared to PX, the cost in LV increases faster because #bdtion of POls is
highly skewed. This leads to inaccurate aggregate infoomat cells covering dense
areas, burdening the reported average time. Figure 10(&%umes the running time as

a function of|T;|, for k& = 16. The diagrams and the explanations are similar to those

of Figure 9(b).
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Fig. 10.Query Time for NSTP

Frequent Social Keywords in RangeFigure 11(a) plots the running time of FSKR
versusk, for r = 3km. Recall that FSKR initially creates the occurrence listshef



terms inSR by merging the inverted lists of the leaf cells that overtaR. Then, the

terms are sorted in decreasing order of list size. These steminate the total cost.

Consequently, the value éfdoes not affect the execution time. FSKR is slower in LV

since the average number of usersiR is greater, i.e., 2105 in LV and 464 in PX.
Figure 11(b) shows the execution time as a function of théusad of SR, for

k = 16. In both datasets the running time grows within LV, the cost exhibits a

steep increase because many new users are covered by theledf&. For instance,

for r = 4km, SR includes on average 3662 users in LV and 627 in PX, whereas for

r = bkm, it covers 6092 and 776 users, respectively.
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Fig. 11.Query Time for FSKR

Summarizing the experimental evaluation, all algorithmes\gery fast (at most, a
few seconds) under all settings. In addition, the constnadf GSKI only takes up
to 23 seconds for the selectedh, and the largest dataset. Finally, the GSKI supports
efficient location updates as it is based on a grid structure.

9 Conclusion

This paper introduces a class of tbpgueries that enable retrieval of users, POls or
keywords based on geographic, social and textual crité&/&apropose three concrete
queries that can be used in various tasks involving coriaged search, profile-based
advertisement and market analysis. For each query we mavjgrocessing algorithm
that exploits a specialized index. Our experiments with datasets confirm the effec-
tiveness and efficiency of the proposed methods.

An interesting direction for future work concerns addiabGSK queries, applica-
ble to different tasks. Even the same queries can be altermgpport alternative partial
scores. For instance, instead of the Euclidean, we coulty dpe road network dis-
tance to the definition of geographic score in NPRU and NSirRiI&ly, FSKR could
be based on co-occurrences of terms in triangles (instepadii) of friends.
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