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Abstract The abundance and ubiquity of graphs (e.g.,
online social networks such as Google+ and Facebook; bib-
liographic graphs such as DBLP) necessitates the effective
and efficient search over them. Given a set of keywords that
can identify a data subject (DS), a recently proposed key-
word search paradigm produces a set of object summaries
(OSs) as results. An OS is a tree structure rooted at the DS
node (i.e., a node containing the keywords) with surrounding
nodes that summarize all data held on the graph about theDS.
OS snippets, denoted as size-l OSs, have also been investi-
gated. A size-l OS is a partial OS containing l nodes such
that the summation of their importance scores results in the
maximum possible total score. However, the set of nodes that
maximize the total importance scoremay result in an uninfor-
mative size-l OSs, as very important nodes may be repeated
in it, dominating other representative information. In view of
this limitation, in this paper, we investigate the effective and
efficient generation of two novel types of OS snippets, i.e.,
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diverse and proportional size-l OSs, denoted as DSize-l and
PSize-l OSs. Namely, besides the importance of each node,
we also consider its pairwise relevance (similarity) to the
other nodes in the OS and the snippet. We conduct an exten-
sive evaluation on two real graphs (DBLP andGoogle+).We
verify effectiveness by collecting user feedback, e.g., by ask-
ing DBLP authors (i.e., the DSs themselves) to evaluate our
results. In addition, we verify the efficiency of our algorithms
and evaluate the quality of the snippets that they produce.

Keywords Keyword search · Diversity · Proportionality ·
Snippets · Summaries

1 Introduction

Keyword search on the Web has dominated our lives, as
it facilitates users to find easily and effectively informa-
tion using only keywords. For instance, the result for query
q = “Faloutsos” consists of a set of links to Web pages
containing the keyword(s) togetherwith their respective snip-
pets. Snippets are short fragments of text extracted from the
search results (e.g., Web pages); they significantly enhance
the usability of search results as they provide an intuition
about which results are worth accessing and which can be
ignored. Furthermore, snippets may provide the complete
answer to the searcher’s actual information needs (if, for
example, the user is only interested in whether Michalis
Faloutsos is a Professor), thus preventing the need to retrieve
the actual result [27].

The keyword search paradigm has also been introduced
in relational databases (e.g., [20]), where the objective is to
find networks of tuples connected via foreign key links that
collectively contain the keywords. For example, the query
“Faloutsos” + “Agrawal” over the DBLP database returns
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Example 1 The OS for Michalis Faloutsos
Author: Michalis Faloutsos
...Paper: On Power-law Relationships of the Internet Topology.
......Conference: SIGCOMM. Year: 1999.
......Co-Author(s): Christos Faloutsos, Petros Faloutsos.
......Cites: Building Shared..., ...Cited by: The Structure...,
...Paper: BLINC: Multilevel Traffic Classification in the Dark.
......Conference: ACM SIGCOMM Computer Comm. Review Year:2005.
......Co-Author(s): T. Karagiannis, K. Papagiannaki.
......Cites: A Parametrizable methodology..., ...Cited by: P4P: Provider...,
...Paper: Transport Layer Identification of P2P Traffic.
......Conference: SIGCOMM. Year:2004.
......Co-Author(s): T. Karagiannis, A. Broido.
......Cites: Their Share: Diversity..., Cited by: Internet Traffic......
...
...

tuples Faloutsos and Agrawal from the author table and their
associations through co-authored papers.However, relational
keyword search may not be very effective when searching
information about a particulardata subject (DS) (e.g., Falout-
sos and his papers, co-authors). A DS is an entity (e.g., an
individual, paper, product) which has its identity in a tuple
which is the result (i.e., subject) of the keyword search.
Relational keyword search only returns tuples containing the
keywords (in this case, only Faloutsos author tuples) and
hence fails to address search for the context of most impor-
tant tuples around a central tuple (i.e., a DS).

In view of this, in [12,13], the concept of object sum-
mary (OS) was introduced; an OS summarizes all data held
in a database about a particular DS, searched by some key-
word(s). More precisely, an OS is a tree with the tuple
nDS containing the keywords (e.g., author tuple M. Falout-
sos) as the root node and its neighboring tuples, containing
additional information (e.g., his papers, co-authors), as child
or descendant nodes. The precise definition of an OS is dis-
cussed in Sect. 2; in a nutshell, a tuple is included in the OS
if it is of high affinity (based on link properties in the tuple
network graph of the database) and it is connected to nDS via
a short path. For instance, the result for q is a set of OSs: one
for each Faloutsos brother. Example 1 illustrates the OS for
Michalis Faloutsos. Note that the OS paradigm is in more
analogy toWeb keyword search, compared to relational key-
word search. For instance, Example 1 resembles a Web page
(as it includes comprehensive information about the DS).
Therefore, for the non-technical users with experience only
on Web keyword search, the OS paradigm will be friendlier
and also closer to their expectations. In general, an OS is a
concise summary of the context around any pivot database
tuple or graph node, finding application in (interactive) data
exploration, schema extraction, etc. Another application of
this summarization concept is on semantic knowledge graphs
[6,26].

In [15,16], OS snippets were proposed (denoted as size-l
OSs). Size-l OSs are composed of only l important nodes so
that (1) the summation of their scores is maximized and (2)
all l nodes are connected to the OS root (i.e., nDS). Example
2 illustrates the size-l OS for M. Faloutsos with l = 15 on

Example 2 Size-15 OS for Michalis Faloutsos
Author: Michalis Faloutsos
...Paper: On Power-law Relationships of the Internet Topology.
......Co-Author: Christos Faloutsos,...
...Paper: Power Laws and the AS-Level Internet Topology.
......Co-Author: Christos Faloutsos,...
...Paper: ACM SIGCOMM‘ 99. ......Co-Author: Christos Faloutsos,...
...Paper: Information survival thr.... .Co-Author: Christos Faloutsos,...
...Paper: The Connectivity and Fault... .Co-Author: Christos Faloutsos,...
...Paper: BGP-lens: Patterns and An... .Co-Author: Christos Faloutsos,...
...Paper: The eBay Graph: How Do.... .Co-Author: Christos Faloutsos,...

Example 3 DSize-15 OS for Michalis Faloutsos
Author: Michalis Faloutsos
...Paper: On Power-law Relationships of the Internet Topology.
.......Conference: SIGCOMM. Year: 1999.
.......Co-Author: Christos Faloutsos, ....
...Paper: Information Survival Threshold in Sensor and P2P Networks.
......Co-Author: S. Madden, ..., Conference: INFOCOM.
...Paper: Power Laws and the AS-Level Internet Topology.
.......Conference: IEEE/ACM Tr. Netw. Year: 2003.
.......Co-Author: Christos Faloutsos,..
...Paper: Network Monitoring Using Traffic Dispersion Graphs.
......Co-Author: M. Mitzenmacher, ...Conference: SIGCOMM.

Example 4 PSize-15 OS for Michalis Faloutsos
Author: Michalis Faloutsos
...Paper: On Power-law Relationships of the Internet Topology.
.......Conference: SIGCOMM. Year: 1999.
.......Co-Author: Christos Faloutsos, ....
...Paper: Denial of Service Attacks at the MAC Layer...
......Co-Author: S. Krishnamurthy, ..., Conference: MILCOM.
...Paper: Power Laws and the AS-Level Internet Topology.
.......Conference: IEEE/ACM Tr. Netw.
.......Co-Author: Christos Faloutsos,..
...Paper: Reducing Large Internet Topologies for Faster Simulations
......Co-Author: S. Krishnamurthy, L. Cui,...Conference: NETWORKING.

the DBLP database. According to [15], a size-l OS should
be a standalone subgraph of the complete OS so that the user
can comprehend it without any additional information. For
this reason, the l nodes should form a connected graph that
includes the root of the OS.

However, this selection criterion (i.e., maximizing impor-
tance score) can render such snippets ineffective. For
instance, in Example 2, the co-authorship of Michalis with
Christos Faloutsos, who is a very important author, monopo-
lizes the snippet with papers co-authored only with Christos.
Thus, we argue that the diversity of constituent nodes will
improve the snippet’s effectiveness. In addition, we argue
that frequent appearances of nodes in an OS should also be
proportionally represented in an effective snippet.

Hence, in this paper, we propose two novel snippets,
namely diverse and proportional size-l OSs denoted as
DSize-l OS and PSize-l OS, respectively. More precisely, in
a DSize-l OS, we favor diversity by penalizing repetitions of
relevant nodes. For instance, the DSize-l OS of Example 3
includes C. Faloutsos only twice, allowing the appearance of
other important co-authors as well. In a PSize-l OS, we favor
proportionality, i.e., a frequent relevant node should be anal-
ogously represented, facilitating diversity at the same time.
Similarly, the PSize-l OSofExample 4 includes also frequent
co-authors S. Krishnamurthy and L. Cui who do not appear
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at all in the DSize-l OS. To compute them, we calculate a
combined score per node, which integrates (1) importance,
(2) affinity to the data subject node nDS and (3) diversity or
proportionality.

For the diversity and proportionality scores calculation,
we employ two types of pairwise relevance: Similarity
(denoted also as sim) and Equality (denoted as equi). More
precisely, sim is the textual similarity between nodes (e.g.,
Jaccard similarity); e.g., two papers with common keywords
are similar. Note that textual similarity on author’s names
makes little sense here; e.g., two authors with a common
surname are still two different persons. Thus, we also use
equi as a binary relevance function, i.e., two OS nodes that
correspond to the same graph node (e.g., the same author
appearing many times in an OS) have equi-relevance 1, oth-
erwise their equi-relevance is 0. We say that a snippet is an
equi size-l OS if it considers only equi relevance (e.g., an
equi DSize-l); we say that a snippet is a sim size-l OS if it
considers both sim and equi relevance (e.g., sim DSize-l).

The efficient generation of DSize-l or PSize-l OSs is a
challenging problem since information about the repetitions
and frequencies of nodes is required and incremental com-
putation is not possible (as opposed to the original size-l OS
computation problem [15]). We discuss a brute-force algo-
rithm, BF-l, that produces optimal solutions but scales badly.
Then, we propose a greedy algorithm (LASP) and its opti-
mization (2-LASPe). Both algorithms are general and can
address both DSize-l and PSize-l OS snippet types (with
minor modifications), based on either similarity or equiva-
lence relevance. In addition, we propose two preprocessing
techniques for the two snippet types (PPrelim-l andDPrelim-
l) that prune the input OSs before processing them.

We conducted an extensive experimental study on the
DBLP bibliographic and Google+ social network datasets.
We verify effectiveness by collecting user feedback, e.g., by
asking DBLP authors (i.e., the DSs themselves) to evaluate
our size-l OSs. The users suggested that the results produced
by our method are very close to their expectations and that
DSize-l and PSize-l are more usable than the respective size-
lsOSs,which disregard diversity. In addition,we investigated
in detail and verified the efficiency and approximation quality
of our algorithms.

The contributions of this paper can be summarized as fol-
lows: (1) the introduction of two novel OS snippets, DSize-l
and PSize-l OS, which capture diversity and proportionality,
respectively; (2) the introduction of efficient greedy algo-
rithms for their generation; (3) a theoretical analysis for the
greedy algorithms including proofs of lower approximations
bounds; (4) an extensive experimental evaluation that verifies
the proposed concepts and techniques.

Apreliminary version of this paper introducesDSize-l and
PSize-lOSsusingonly equality relevance [17].Here,wegen-
eralize our relevance measure by also considering pairwise

Paper AuthorConfYearConference

Fig. 1 DBLP database schema

textual similarity (sim); this dictates significant amendments
of our greedy algorithms. As we demonstrate in Sect. 8, this
generalization is significantly better in terms of usability.
In addition, in this paper, we enrich the theoretical analy-
sis of our greedy algorithms by including proofs of the lower
bounds of their approximations. Finally, we provide a more
comprehensive evaluation for the usability, quality and effi-
ciency of size-l OSs.

The rest of the paper is structured as follows. Sect. 2
describes background and related work. Section 3 describes
the semantics of DSize-l and PSize-l OSs. Section 4 intro-
duces the optimal solution, whereas Sects. 5 and 6 present the
greedy algorithms. Section 7 introduces preprocessing algo-
rithms for DSize-l and PSize-l OS computation. Section 8
presents experimental results. Finally, Sect. 10 provides con-
cluding remarks.

2 Background work

In this section, we describe background work that we build
upon in this paper; namely, we describe the concepts of an
object summary (OS) and size-l OS.

2.1 Object summaries

According to the keyword search paradigm of [13], an object
summary (OS) is generated for each node (tuple) nDS found
in a graph (database) that contains the query keyword(s) (e.g.,
“Michalis Faloutsos” node of author relation in the DBLP
database). An OS is a tree having nDS as a root, the nodes
that link to nDS through foreign keys as its children, and
the nodes that link to the children recursively as descendant
nodes. To construct an OS, the relation RDS (e.g., the author
relation) that holds nDS and those that link to RDS via foreign
keys are used. First, a Data Subject Schema Graph GDS is
generated. Figure 2 illustrates theGDS for the author relation
of the DBLP database, whose schema is shown in Fig. 1. A
GDS is a directed labeled tree with a fixed maximum depth
that has an RDS as a root node and captures the subset of the
schema surrounding RDS; any surrounding relations partici-
pating in loop or many-to-many relationships are replicated
accordingly. In other words, a GDS is a “treelization” of the
database schema, where RDS becomes the root, RDS’s neigh-
boring relations become child nodes and so on. In order to
generate the OS, the relations from GDS which have high
affinity with RDS are used. The affinity of a relation Ri to
RDS can be calculated by the formula:
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Conference
(0.78, sim)

Co-author
(0.82, equi)

ConfYear
(0.83, equi)

PaperCites
(0.77, sim)

PaperCitedBy
(0.77, sim)

Paper
(0.92, sim)

Author
(1, equi)

Fig. 2 DBLP author GDS (affinity, relevance type)

a f (Ri ) =
∑

j

mw j · m j · a f (RParent), (1)

where j ranges over a set of measures (m1,m2, . . . ,mn)
and their correspondingweights (mw1,mw2, . . . ,mwn), and
a f (RParent) is the affinity of Ri ’s parent to RDS. The mea-
sures’ scores range in [0, 1], and the corresponding weights
sum to 1; thus, the affinity score of a node is monotonically
non-increasing with respect to the node’s parent. More pre-
cisely, we use four measures:m1 considers the distance of Ri

to RDS, i.e., the shorter the distance, the bigger the affinity
between the two relations. The remaining measures consider
the connectivity of Ri on both the database schema and data
graph. m2 measures the relative cardinality, i.e., the average
number of tuples of Ri that are connected with each tuple
in RParent , whereas m3 measures their reverse relative car-
dinality, i.e., the average number of tuples of RParent that
are connected with a tuple in Ri . m4 considers the schema
connectivity of Ri (i.e., the number of relations it is con-
nected to in the relation graph). Given a threshold θ , a subset
of GDS can be produced that includes only the relations of
affinity at least θ to RDS. The OS for a tuple nDS in RDS is
generated by traversing the GDS starting from nDS (e.g., by
joining nDS with the neighboring relations of RDS; Algo-
rithm 4). For instance, for q = “Faloutsos” and for nDS =
“Michalis Faloutsos” in the author RDS of the DBLP data-
base, the OS presented in Example 1 will be generated.

Every tuple vi in the database carries a global importance
weight gi(vi ), calculated using PageRank-inspiredmeasures
such as ObjectRank [3] and ValueRank [14]. Due to the
“treelization” of the schema graph by GDS, multiple tuples
in an OS may correspond to the same tuple in the database.
For instance, the same co-author (e.g., Christos Faloutsos)
may appear multiple times (e.g., 12) in the OS of Michalis.
Formally, for a node ni of an OS, we use function g(ni ) to
denote the corresponding tuple v in the database. Thus, for
two OS nodes ni and n j , we may have g(ni ) = g(n j ) = v.

We also denote as f r(v) (i.e., f r(g(ni )), or simply f r(ni ))
the frequency of tuple v in the given OS.

2.2 Size-l OSs

According to [15], given an OS and an integer l, a candidate
size-l OS is any subset of the OS composed of l nodes, such
that the l nodes form a tree rooted at nDS. In [15], we argue
that a good size-l OS should be a standalone and meaningful
synopsis of the most important and representative informa-
tion about the particular DS (so that users can understand it as
is, without any additional nodes). In particular, any interme-
diate nodes that connect nDS (e.g., M. Faloutsos) with other
important nodes (e.g., C. Faloutsos) in the size-l OS guaran-
tee that the size-l remains standalone, since these connecting
nodes (e.g., co-authored papers) include the semantics of the
associations. For instance, in Example 2, if we exclude the
paper “On Power-law …” but only include the co-authors,
we exclude the semantic association between nDS and co-
author(s), which in this case is their common paper.

The holistic importance Im(Sl)of any candidate size-l OS
Sl is defined as the sum of the local importance scores of its
nodes, i.e., Im(Sl) = ∑

ni∈Sl li(ni ). The local importance
of a node ni is the affinity-weighted global importance of
ni , i.e., li(ni ) = a f (ni ) · gi(ni ). The affinity a f (ni ) of a
node ni equals the affinity of the relation where ni belongs
(Equation 1); global importance was defined in Sect. 2.1.
A candidate size-l OS is an optimal size-l OS, if it has the
maximum Im(Sl) over all candidate size-l OSs.

The generation of a size-l OS is a challenging task because
we need to select l nodes that are connected to nDS and at the
same time result in the maximum score. An optimal dynamic
programming algorithm (requiring O(nl2) time where n is
the amount of nodes in the OS) and greedy algorithms were
proposed in [15].

3 DSize-l and PSize-l snippets

We propose two types of size-l OSs, namely diverseDSize-l
OSs and proportional PSize-l OSs, which extend the size-l
OS definition [15] to capture diversity and proportionality,
respectively. Similarly to size-l OSs, both DSize-l OSs and
PSize-l OSs should be standalone sub-trees of the OS, com-
posed of l important and representative nodes only, so that
the user can understand them without any additional infor-
mation. Thus, the l nodes should form a connected graph
that includes the root of the OS (i.e., nDS). We argue that
an effective DSize-l (PSize-l) OS should gracefully combine
diversity (proportionality) and the local importance scores of
constituent nodes. Hence, we propose that for each OS node
ni , we estimate a respective score for diversity, proportion-
ality and local importance, denoted by dv(ni ), pq(ni ) and
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Table 1 Notations

Notation Definition

gi(vi ) The global importance of a graph node vi

li(ni ) The local importance of an OS node ni
f r(vi ) The frequency a graph node vi appears in an OS

z(vi ) The amount of times that a graph node vi has
been added on the snippet

dv(ni ) The diversity score of an OS node ni
dw(ni ) The diversity weight score: li(ni ) ∗ dv(ni )

pq(ni ) The proportionality quotient of an OS node ni

pw(ni ) The proportional weight score: li(ni ) ∗ pq(ni )

w(ni ) A weight score that may represent either dw(ni )
or pw(ni ) (when the context is clear)

ap(ni ) The average w(.) score of nodes of path ni to root

Im(Sl) The Importance score of a size-l Sl

li(ni ), respectively. dv(ni )(pq(ni )) and li(ni ) are combined
to a single score dw(ni )(pw(ni )) for a DSize-l (PSize-l)
OS, simply denoted by w(ni ) when the context (i.e., diver-
sity or proportionality) is clear. The notations frequently used
throughout this section and in the rest of the paper are sum-
marized in Table 1.

Then, the objective is to select the l nodes that (1) include
nDS and form a connected subtree of the OS and (2) the sum
of their w(.) scores is maximized. Local importance (i.e.,
li(.)) can be calculated as in the original size-l OS problem
(i.e., by multiplying affinity with global importance [15]),
thus hereby, we discuss only diversity and proportionality.

We investigate two relevance types among OS nodes,
namely similarity (denoted as sim) and equality (denoted
as equi). More precisely, we consider relevance among
nodes belonging to the same relation; thus, we classify each
GDS relation either as sim or equi . We can use a domain
expert to classify each relation in these types. When two
nodes belong to different relations, then they have relevance
0 (e.g., the similarity between a conference and a paper is
always 0). For nodes belonging to the same sim relation, we
use Jaccard similarity (i.e., sim(ni , n j ) = |ni∩n j |

|ni∪n j | ; we treat ni
and n j as sets ofwords).We can use an expert to definewhich
attributes to compare per relation. For instance, paper is a
sim relation (author GDS , Fig. 2), and we define similarity
between papers using their titles (e.g., “On Power-law rela-
tionships of the Internet Topology” vs. “Power laws and the
AS-Level Internet topology”). (Note that Jaccard similarity is
symmetric (i.e., sim(ni , n j ) = sim(n j , ni )), and the respec-
tive distance (i.e., 1−sim(ni , n j )) is a metric.) However, we
observe that textual similarity cannot be applied on all rela-
tions meaningfully. For instance, consider Authors; it is not
meaningful to define textual similarity between author names
“Christos Faloutsos” vs. “Michalis Faloutsos.”Thus, for such
cases (e.g., DBLP relations Author and ConfYear), we con-

sider equality relevance, where two different OS nodes may
either correspond to the same tuple (e.g., g(ni ) = g(n j ) =
vp) or to two different tuples (e.g., g(ni ) �= g(n j )). In the
former case, we have sim(ni , n j ) = 1, whereas in the latter
case, we have sim(ni , n j ) = 0. Note that in both relevance
types, we measure relevance between two nodes using the
same notation, i.e., sim(ni , n j ) (even for equi relations).
Also note that sim(ni , n j ) = 1 indicates that the two nodes
are equal even in the case of sim relations; e.g., although
conference is a sim relation, an author may have papers
appearing in the same conference more than once.

3.1 Diversity (DSize-l OSs)

We suggest that the l nodes should be diversified by prevent-
ing the domination of very important nodes. For example, in
the Michalis Faloutsos OS, the co-authorship with the very
important author Christos Faloutsos dominates the snippet,
and this renders the snippet not representative. A natural cri-
terion objective toward measuring diversity is to maximize
the sum of dissimilarities between nodes. Thus, for a given
graph node ni in aDSize-l DSl, we suggest to estimate diver-
sity as follows:

dv(ni )

=

⎧
⎪⎪⎨

⎪⎪⎩

1 −
∑

n j∈DSl,ni �=n j
sim(ni , n j )

l − 1
R(ni ) is sim relation

1 − z(g(ni )) − 1

l − 1
R(ni ) is equi relation

,

(2)

where R(ni ) is the relation ni belongs to, n j is any other node
in DSl, and sim(ni , n j ) is the similarity between ni and n j .
When g(ni ) = g(n j ) (i.e., ni and n j correspond to the same
tuple), then sim(ni , n j ) = 1 for both sim and equi relations.
For an equi relation, if g(ni ) �= g(n j ), then sim(ni , n j ) =
0. Recall also that if ni and n j do not belong to the same
relations (i.e., R(ni ) �= R(n j )), then sim(ni , n j ) = 0. The
summation of similarities of ni to the rest of the nodes in
the snippet will give us the respective dv(ni ) score. For an
equi relation, that will be z(g(ni )) − 1, where z(g(ni )) is
the amount of times g(ni ) appears in the snippet (since for
all nodes n j such that g(ni ) = g(n j ), sim(ni , n j ) = 1).
Dividing by l − 1, we normalize dv(ni ) in the range [0,1].

Given a set of nodes, n j1 . . . n jx , that have been added
to the DSize-l OS, we denote as dv(ni |n j1, . . . n jx ) the
diversity score of an unselected node ni considering these
added nodes. For instance, the score dv(P1|P5) in Table 2
denotes the score of P1 after the addition of P5 in the snip-
pet. For short, when the context is clear, we also denote as
dv(ni |n jx ) the score of ni given that n jx has been appended
as the last (i.e., x th) node on the snippet. We also denote as
dv(ni |∅) themaximumdiversity score a node ni can get, i.e.,
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dv(ni |∅) = 1, e.g.,when ni is the first to be added. This nota-
tion will be useful when describing our greedy algorithms,
where after each node addition, the score of unselected nodes
is affected accordingly.

For equi nodes for short, we also denote as dv[z](g(ni ))
the diversity score of a graph node ni considering it appears
for the zth time in the snippet. For instance, in Table 3, dv[1]
indicates the score of a node assuming it appears for the first
time, where dv[1](ni ) = 1 is the maximum diversity score
(which corresponds to dv(ni |∅) = 1). As another example,
consider l = 10 and that C. Faloutsos appears two times (i.e.,
z = 2); dv[2] = 1 − 2−1

10−1 = 8
9 = 0.89 (Table 3). Note that

this score corresponds to the graph node g(ni ); thus, both
nodes will have the same dv(.), i.e 0.89 (an alterative way
would be to score the first occurrence as 1 and the second as
0.78, since 1 + 0.78 = 0.89 + 0.89).

Our equation is inspired by (1) max-sum diversification
that maximizes the sum of the relevance and dissimilarity
of a set and by (2) the use of a mono-objective formulation,
which, similarly to our equation, combines relevance and
dissimilarity to a single value for each document [18]. Note
that, in general, diversification approaches trade-off (1) the
similarity of results with the given query and (2) the dissimi-
larity among such results using a similarity measure (e.g., IR
techniques). For instance, given a query “Internet Topology,”
papers “On Power-law relationships of the Internet Topol-
ogy” and “Power laws and the AS-Level Internet topology”
have some similarity to this query, but they also have some
similarity among them, both types can be estimated using a
common IR measures such as Jaccard similarity. This is not
the case here, sincewe do not consider the similarity of nodes
to the query, but a local importance score in relation to nDS .
Thus, local importance and similarity are not meaningfully
comparable. Note also that their respective values may not
be in the same range (e.g., local importance may range in
[0,10], whereas dv(.) always ranges in [0,1]). Hence, unlike
most diversification approaches, in the combining function
dw(.) (to be defined in Sect. 3.3), we do not sum up local
importance and dissimilarity, but multiply them.

3.2 Proportionality (PSize-l OSs)

We observe that in an OS, we often find equi graph nodes
(i.e., database tuples) multiple times. For instance, in the
Michalis Faloutsos OS (see Table 3), we have 37 instances
of S. Krishnamurthy, 12 instances of C. Faloutsos, 18 papers
in INFOCOM.We denote the frequency of a graph node vi in
an OS as f r(vi ) (or simply by f r when the context is clear).
Graph nodes appear in anOSmultiple times could sometimes
be comparatively weak in terms of importance, but still given
their frequency in the OS, they should be represented anal-
ogously in an effective snippet. Thus, we suggest that in a
PSize-l snippet, disregarding local importance (i.e., assum-
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Table 3 Equi relevance of selected co-authors of Michalis (Ranked descending their pw[1])
Name li(.) f r(.) dv[1](.) dw[1](.) dv[2](.) dw[2](.) pq[1](.) pw[1](.) pq[2](.) pw[2](.)
Srikanth V. Krishnamurthy 0.60 37 1.00 0.60 0.89 0.53 12.33 7.40 7.40 4.44

Christos Faloutsos 1.80 12 1.00 1.80 0.89 1.60 4.00 7.20 2.40 4.32

Jun-Hong Cui 0.81 11 1.00 0.81 0.89 0.72 3.67 2.97 2.20 1.78

Thomas Karagiannis 0.70 10 1.00 0.70 0.89 0.62 3.33 2.33 2.00 1.40

Michael Mitzenmacher 1.40 3 1.00 1.40 0.89 1.24 1.00 1.40 0.60 0.84

George Varghese 1.38 2 1.00 1.38 0.89 1.23 0.67 0.92 0.40 0.55

Konstantina Papagiannaki 0.61 4 1.00 0.61 0.89 0.54 1.33 0.81 0.80 0.49

Samuel Madden 1.61 1 1.00 1.61 0.89 1.43 0.33 0.54 0.20 0.32

Marek Chrobak 0.33 4 1.00 0.33 0.89 0.29 1.33 0.44 0.80 0.27

Jakob Eriksson 0.15 7 1.00 0.15 0.89 0.13 2.33 0.35 1.40 0.21

ing that all nodes have the same li(.)), we should include
nodes in proportion of their frequency. For example, if a
graph node vi appears 37 times in the total of 1,259 OS
nodes, then vi should ideally appear �l · 37/1, 259� times in
the respective PSize-l OS (note that this may not practically
possible as in-between nodes may also be required, i.e., the
co-authored papers in our example).

Analogously, we observe that the topic of sim nodes may
appear multiple times; a node may be very similar to many
other nodes in the OS. For instance, in Table 2, we find
six out of ten papers including the word “Multicast” (e.g.,
P1, P2, P4) and two papers including a pair of words “Aggre-
gated Multicast.” Thus, papers have some similarity due to
the frequent common topics (e.g., “Aggregated Multicast”),
and hence, they should also be analogously represented.

For this purpose, for a given graph node ni in a PSize-
l PSl, we propose the use of the proportional quotient as
follows:

pq(ni )

=

⎧
⎪⎪⎨

⎪⎪⎩

∑
n j∈OS sim(ni , n j )

α · ∑
n j∈PSl sim(ni , n j ) + 1

R(ni ) is sim relation

f r(g(ni ))

α · z(g(ni )) + 1
R(ni ) is equi relation

,

(3)

where R(ni ) is the relation where ni belongs, sim(ni , n j )

is the similarity between the two nodes (as defined in Equa-
tion 2), and α is a constant that can tune proportionality. For
equi relations, z(g(ni )) is the amount of times that node ni
appears in the snippet and f r(g(ni )) is the frequency that
the node appears in the OS. We use analogous notations as
in dv(ni ).We denote by pq(ni |n j1, . . . n jx ) the proportional
quotient of ni when nodes n j1, . . . n jx have been appended to
the snippet. For equi nodes, we also denote as pq[z](ni ) the
proportional score considering ni appears z times (Table 3).

This equation is inspired by the Sainte-Laguë Algorithm
[8] (with α = 2), and empirically we found that it is very
effective for our problem (other equations can also be con-

sidered, e.g., [7,29]). The rationale of this quotient is to favor
a frequent node (or nodes including frequent topical words),
and each time a node is added to the snippet, its proportional
score is significantly decayed so that other frequent nodes
will be selected, in turn. Thisway, diversification is also facil-
itated. For instance, considering f r = 12 and α = 2 for C.
Faloutsos, by adding this node once we get pq[1](ni ) =
12/3 = 4 and twice we get pq[2](ni ) = 12/5 = 2.4.

3.3 DSize-l and PSize-l definitions

Based on the above discussion, for DSize-l OSs, we propose
the following combining score per node:

dw(ni ) = li(ni ) · dv(ni ), (4)

where li(ni ) = a f (ni ) · gi(ni ) is the local importance of
ni and dv(ni ) is the diversity factor (Equation 2). Tables 2
and 3 depict examples of how these scores can be obtained
by constituent scores for l = 10. For instance, consider the
simplified example where we need to select five authors (and
thus an intermediary paper), then we will select twice C.
Faloutsos (i.e., 0.89 · 1.8 + 0.89 · 1.8 = 1 · 1.8 + 0.78 · 1.8)
and once S. Madden (1 · 1.6), M.Mitzenmacher (1 · 1.4) and
G.Varghese (1·1.4). Note that a third addition of C. Faloutsos
cannot compete the total 1.4 score, as the additional score is
only 1.12 (i.e., (3 ·0.78−1−0.78) ·1.8 = 0.56 ·1.8 = 1.08).

Definition 1 (DSize-l OS) Given an OS and l, a DSize-l OS
is a subset of OS that satisfies the following:

(1) The size in nodes of DSize-l OS is l (where l ≤ |OS|)
(2) The l nodes form a connected tree rooted at nDS

(3) Each node ni carries a weight dw(ni ) (obtained by Equa-
tion 4)

(4) The aggregated score of a DSize-l OS DSl can be calcu-
lated by:

Im(DSl) =
∑

ni∈DSl

dw(ni ). (5)
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Let a candidate DSize-l OS be any OS subset satisfying
conditions 1-3; then, the optimal DSize-l OS is the candi-
date snippet that has the maximum Im(DSl) among all such
candidates.

Problem 1 (Find an optimal DSize-l OS) Given an OS and
l, find a candidate DSize-l OS of maximum score (according
to Definition 1).

Analogously, we define the proportionality score per node
(i.e., pw(ni ) = li(ni )· pq(ni ), instead of Equation 4), PSize-
l OS and the optimal PSize-l OS problem (a formal definition
is omitted due to the interest of space). For instance, we
observe that our selection policy will favor first the addition
of S. Krishnamurthyan author and the respective co-authored
paper; then, the addition of author C. Faloutsos with a co-
authored paper; then, another round with these two authors,
etc.

3.3.1 Problem definitions and algorithms

We have two types of problems, namely PSize-l and DSize-l
generation. In addition, an OSmay have only equi relevance
or both equi and sim relevance. Thus, we have four combi-
nations of problems, and thus, we propose algorithms that are
general to address all these combinations. Firstly, we propose
a brute-force algorithmwhich is prohibitively slow. Then, we
propose two greedy algorithms LASP and 2-LASPe (which
is LASP’s optimization). Finally, we propose pruning algo-
rithms that can produce pruned preliminary results. We can
apply all aforementioned algorithms on these preliminary
OSs.

3.3.2 Notation

For simplicity, we unify dw(.) and pw(.) into a single
notation w(.) and use w(ni ) to refer to the corresponding
diversity or proportionality score of a node ni in a DSize-l
OS or PSize-l OS, respectively. Analogously to diversi-
fication and proportionality scores notations, we denote
w(ni |n j1, . . . n jx ) as the score given n j1, . . . n jx have been
added and w[z](ni ) as the score when ni is added for the zth
time. In the rest of the paper, whenever the context is clear,
we drop ni or (ni |n j1, . . . n jx ) from the notation and denote
the diversity/proportionality score of a node simply by w(.).

4 Brute-force (BF-l) algorithm

A brute-force (BF-l) algorithm for computing the optimal
DSize-l (or PSize-l) OS would consider all candidate size-
l trees, compute the respective scores, and eventually find
the optimal solution. BF-l generates all possible candidate

trees by traversing the complete OS in a breadth-first fash-
ion, recursively (alternative traversals such as depth-first can
also be applied). Apparently, this algorithm computes the
optimal results of both DSize-l and PSize-l OS computation
problems (and even the optimal result of the original size-l
OS problem [15]), since it considers all candidate snippets.
The pseudocode and more details can be found in [17].

The time complexity of BF-l is O( n!
(n−l)!l! ), where n is the

number of nodes inOS and l is the required size. Note that, an
application of a dynamic programming algorithm [15] that
could reduce this cost is not possible here, because the score
of a diversified size-l OS (either DSize-l or PSize-l) is not
distributive w.r.t. the scores of the subtrees it is composed of;
the reason is that the two subtrees that contain one or more
common tuples are not independent (i.e., they affect each
others’ score due to the diversity components of the scoring
formulae). In other words, given an OS tree T that can be
decomposed to subtrees T1, T2, etc., the optimal diversified
size-l OS is not necessarily composed by some optimal diver-
sified size-l ′ OSs (l ′ < l) of the subtrees T1, T2, etc. (which is
the case for size-l OSs [15]). This is because the computation
of an optimal diversified size-l ′ OS in a subtree Ti disregards
the diversity of its constituent nodes w.r.t. the snippets cho-
sen from the other subtrees Tj �= Ti . If we were to consider
all possibilities of graph node frequencies in the snippets of
other subtrees, this would require exponential space.

5 Largest averaged score path (LASP)

The BF-l algorithm can be very expensive even for moder-
ate values of l or |OS|. Thus, we propose LASP, a greedy
algorithm, that can produce a size-l OS of high quality at a
much lower cost. In a nutshell, LASP firstly generates the
OS. It also calculates for each node ni an initial w(ni ) score
(i.e., w(ni |∅), using Eq. 4) and its corresponding average
w(ni ) score per node (denoted as ap(ni )) of the path from
ni to the root. Then, the algorithm iteratively selects and adds
to the size-l OS the path pi of nodes with the largest ap(.).
The rationale behind selecting paths instead of single nodes
with the largest score is that we can include nodes of very
large importance while their ancestors have less importance
as their score is averaged. Algorithm 1 is a pseudocode of
the heuristic, and Fig. 3 illustrates an example.

LASP is a general algorithm that (1) can compute both
types of size-l OSs (i.e., DSize-l and PSize-l OSs) and (2) can
process both relevance types (i.e., equality and similarity).
The difference between the two size-l types is that the pro-
portionality equation also considers the similarity/equality
(frequency) of each node against all other nodes, which is
calculated during the OS generation process (to be described
in more detail shortly). LASP can process both relevance
types by using the pre-calculated sim matrix (a matrix stor-
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Fig. 3 LASP algorithm: the size-5 OS (annotated with OS and (graph) node ID, w(.) and ap(.); selected nodes are shaded). a The initial OS.
b First update. c The final update

Algorithm 1 Largest Averaged Path Algorithm

LASP (l, nDS)
1: OS Generation (nDS) � generates OS, w(.), ap(.), HFr and W
2: while (|size-l| < l) do
3: pi=path from maximum W node
4: add first (l − |size-l|) nodes of pi to size-l
5: if (|size-l| < l) then
6: remove selected path pi from the OS tree and from W
7: UpdateRemPaths (pi )
8: UpdateRelScores (pi )
9: return size-l

UpdateRemPaths (pi )
1: for each child v of nodes in pi do
2: for each node n j in the subtree rooted at v do
3: update ap(n j ) on the OS tree
4: update ap(n j ) on W

UpdateRelScores (pi )
1: for each node ni in pi do
2: for each unselected OS node n j do
3: if (sim(n j , ni ) > 0) then
4: update w(n j ) considering sim(n j , ni )
5: for each node nk in the subtree rooted at n j do
6: update ap(nk) on OS tree using w(n j )

7: update ap(nk) on W

ing the similarity among all nodes), which facilitates the
initial calculation of w(.) and ap(.), and the consequent
updates (to be described in more detail shortly). Thus, given
an OS annotated with w(.) and ap(.) scores, the prob-
lem of determining either DSize-l or PSize-l using either
equality or similarity relevance type remains the same for
LASP.

More specifically, the LASP algorithm firstly generates
the OS (line 1). DuringOS Generation(), LASP also calcu-
lates the w(.) score and the respective ap(.) score per node.
For the DSize-l, the calculation of dv(.) (and thus w(.)) is
straightforward, whereas for the PSize-l, the calculation of

pq(.) is more demanding as it requires the comparison of
each node against all other nodes. Thus, for equi relations,
in order to facilitate faster calculation of pq(.) scores,we also
maintain a hash table of graph nodes (denoted as HFr ) con-
taining the frequency of a graph node in the OS tree (denoted
as f r ). HFr can easily be compressed by excluding nodes
appearing only once in the OS; thus, if a node does not exist
in HFr , we can infer that it only appears once. For sim
relations, we compare each node against all other nodes as
to obtain their pq(.). Note that sim comparisons are more
expensive (i.e., (n+1)·n

2 time) in contrast to equi H Fr -based
comparisons that require only n time. During the OS genera-
tion, we also generate a priority queueW of the initial ap(.),
in order to better manage nodes.

We then select the node with the largest ap(.) and add
the corresponding path to the size-l OS. We remove this
pi from the OS and from W (lines 6). By removing the
nodes of pi from the OS, the tree now becomes a forest;
each child of a node in pi is the root of a tree. Accord-
ingly, the ap(.) of affected nodes is updated (1) to disregard
the removed nodes in the path (UpdateRemPaths()) (2) and
also to consider the revised w(.)s due to relevance to newly
added nodes (UpdateRelScores()). Note that the ap(.) of an
unselected node corresponds to the w(.) score the node will
have if included in the snippet (considering also the sim-
ilarity loss of already added nodes for the diversity case,
i.e., dv). Thus, w(.) and ap(.) scores of all unselected nodes
should be updated each time a newnode is added (by function
UpdateRelScore()). Also note that this general LASP can be
significantly more expensive than the version of LASP pre-
sented in [17], since for the latter, it suffices to simply count
f r and z of added nodes for the estimation of ap(.) and w(.)

scores.
This process (i.e., the selection of the path with the largest

ap(.), the addition to the size-l OS, and the required updates)
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continues iteratively as long as the selected nodes are less
than l. If less than |pi | nodes are needed to complete the
size-l OS, only the top nodes of the path are added to the
size-l OS (because only these nodes are connected to the
current size-l OS). Note that each time a path is selected, it
is guaranteed to be connected with the previously selected
paths (as the root of the selected path should be a child of a
previously selected path); therefore, the selected paths will
form a valid size-l OS.

Take for instance the example of Fig. 3, where nodes
at level one have similarity relevance and nodes at level
two have equality relevance. More precisely, consider sim
(n3, n4) = sim(n4, n5) = 0.6, whereas equality relevance
is annotated on the example of figure (e.g., g(n7) = g(n9) =
g(n11) = v7). Node n11 (i.e., graph node v7) has ap(n11) =
48.6, because its path includes nodes n1, n5 and n11 with
average w(.) being (30+36+80)/3 = 48.6. Assuming that
l = 5, at the first iteration, the algorithm selects and appends
to size-l OS the path comprising nodes n1, n5 and n11 with
the largest ap(.), i.e., 48.6. For the remaining nodes,w(.) and
ap(.) are updated to disregard the removed nodes and also to
consider the inclusion of newly added nodes (Fig. 3b). For
instance, the revised ap(n12) is (35 + 55)/2 = 45, because
its path now includes only n6 and n12. Also, nodes n7 and n9
which correspond to the same graph node as n11 and node
n4 which has similarity with node n5 which have just been
added to the size-l also need to be updated with neww(.) and
ap(.) scores. In general, if such nodes have descendants, then
their descendants should also be updated because both their
ap(.)s and w(.) are affected. The next path to be selected is
that ending at n8, which adds two more nodes to the size-l
OS (Fig. 3c). Note that ap(ni ) for each node ni corresponds
to the path starting from ni to the root of the corresponding
unselected tree (from the unselected forest). For instance,
during the second update, p8 comprises n2 and n8. Note also
that the path’s root (e.g., n2) is always the child of a node (in
the OS) which already exists in the current size-l OS, e.g.,
n1 in this case. Thus, each time we select a path to append to
the size-l OS, we always get a valid OS.

5.1 Analysis

The time complexity of the algorithm is O(nl log(n)), where
n is the size of the complete OS, as at each step the algorithm
may choose only one node which causes the update of O(n)
paths twice (firstly for the path size update and secondly for
the z updates). Each update costs log(n) time using the pri-
ority queue W . In terms of approximation quality, this algo-
rithm empirically produces very good results. Hereby, we
prove the approximation lower bound and cases where this
algorithm will return the optimal DSize-l and PSize-l OSs.

5.1.1 Lower bound of LASP approximation

Theorem 1 LASP is a d-approximation algorithm, where d
is the maximum depth of the GDS tree. Namely, the ratio of
the optimal Im(.) (denoted as OPT) over the Im(.) of the
solution by LASP (denoted also as LASP) is at most d.

Proof We analyze the worst case for LASP, by defining two
rival sets of nodes Ni and N j . As we will show in the sequel,
our definitions of Ni and N j sets correspond to theworst case
for LASP, whichmaximizes the Im(.) ratio between the opti-
mal result (by including nodes from Ni ) and the approximate
solution by LASP (by including nodes from N j ).

Let Ni be a set of sibling nodes in the OS tree, which are
at depth di . Let Ni,p be the pth node in Ni . Moreover, (i)
|Ni | ≥ l −di , i.e., the amount of nodes in Ni is at least l −di
and (ii) sim(Ni,p, Ni,q) = 0 for all p, q, i.e., none of Ni

nodes have any similarity. Let us also assume that all nodes
in Ni have the same w(Ni,p) score (denoted as w(Ni ) for
simplicity). Let ap(.)[z] be the ap(.) of a node after z paths
additions (iterations).

In addition, let N j be also a set of nodes, where |N j | ≥
l, with a common w(N j ) for all nodes and a common
ap(N j )[z] for all nodes such that ap(N j )[z] = w(n j ) for
a z ≥ 1. Again, we assume that none of these nodes are sim-
ilar. An example of N j set will be the analogy of the Ni set,
i.e., a set of siblings at depth d j , where |N j | ≥ l − d j , with a
common w(N j ) for all nodes (Fig. 4). Another example of a
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Fig. 4 LASP: example of rival Ni and N j sets (annotated with node ID, w(.) and ap(.)[z]; selected nodes are shaded). a The initial OS. b First
update
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valid N j would be as follows: The N j,1 is as defined in Fig. 4
(i.e., at path n1, n3, n5, N j,1), whereas N j,2, ..., N j,l are chil-
dren nodes of the root n1 instead (since after the first addition
of N j,1, the ap(N j )[z] of N j,2, ..., N j,l becomes w(n j )).

When, (1) ap(N j )[z] > ap(Ni )[z] for any z, (2)w(N j ) >

ap(Ni )[z] for z ≥ 1 and (3) w(Ni ) > w(N j ), the above
assumptions dictate that LASPwouldwrongly prefer to itera-
tively select nodes from N j over nodes from Ni .As illustrated
by Fig. 4, there are two states of the first condition: the initial
state before any updates, i.e., z = 0 and the state after the first
update, i.e., z ≥ 1. The latter is after the first selection of an
N j node where its ancestors are removed from the OS, lead-
ing to new aps, i.e., ap(Ni )[z] = w(Ni )/di (to be explained
shortly) and ap(N j )[z] = w(N j ), which leads to the second
condition: w(N j ) > ap(Ni )[z]. The bigger the difference
between w(Ni ) and w(N j ), the bigger the approximation
loss of LASP over the optimal solution, because N j nodes
will repeatedly be selected (due to w(N j ) > ap(Ni )[z])
over Ni nodes. To see this in an example, consider the OS
tree of Fig. 4, where each node includes its w(.) score and
the corresponding ap(.)[z] score for z = 0 and 1 (where
di = d j = 3). All nodes in group Ni (four leftmost leaf
nodes) have w(.) scores 100, all nodes in the path from the
OS root to the parent of Ni have 0w(.) scores, and all nodes in
group N j (four rightmost leaf nodes) have w(.) scores 33.4.
ap(N j )[z] are always marginally larger than the respective
ap(Ni )[z] for all z. E.g., initially, we have ap(N j )[0] = 25.1
and ap(Ni )[0] = 25, and after the first addition of a path to
N j,1 , we have ap(N j )[z] = 33.4 and ap(Ni )[z] = 33.3 for
z ≥ 1. In this example, LASP will iteratively select all N j

nodes before it can pick any Ni node. On the other hand,
the optimal solution would include l − di Ni nodes. Thus,
if |N j | ≥ l − d j , the approximation loss of LASP will be
(PPari + (l − di ) · w(Ni )) − (PPar j + (l − d j ) · w(Ni )),
where PPari and PPar j are the sum of w(.) scores at the
nodes along the path from the OS root to the parent of Ni

and N j , respectively.
Sets Ni and N j are rivals, since they compete in the selec-

tion and LASP wrongly chooses nodes from N j over nodes
from Ni , resulting to an approximation loss. We say that two
such sets are not valid rivals if they do not meet the condi-
tions: (1) ap(N j )[z] > ap(Ni )[z], (2) w(N j ) > ap(Ni )[z]
and (3) w(Ni ) > w(N j ) for any z.

Thus, considering anOScontains two rival sets Ni and N j ,
we can estimate the approximation ratio of LASP compared
to OPT as follows:

OPT

LASP
= PPari + (l − di ) · w(Ni )

PPar j + (l − d j ) · w(N j )
(6)

Lemma 1 For a fixed ap(Ni )[0] and l > di , the summation
of the scores of the nodes of a snippet that includes a subset

of Ni (i.e., Im(DSl(Ni )) = PPari + (l − di ) · w(Ni )) is
maximized when PPari = 0.

Proof For a fixed ap(Ni )[0], obviouslyw(Ni ) is maximized
when PPari = 0, as ap(Ni )[0] = (PPari + w(Ni ))/di
and ap(Ni )[1] = w(Ni ). Hence, Im(DSl(Ni )) = PPari +
(l − di ) · w(Ni ) is also maximized when PPari = 0 and
l > di , for a fixed ap(Ni )[0].

For instance, for ap(Ni )[0] = 25, di = 3 and l = 6,
consider the two Ni1 and Ni2 cases with PPari1: ap(Ni1) =
(25 + 25 + 25 + 25)/4 = 25 and PPari2: ap(Ni2) = (0 +
0 + 0 + 100)/4 = 25. Thus, we have w(Ni ) scores 25 and
100 and holistic scores Im(DSl(Ni1)) = 6 · 25 = 150 and
Im(DSl(Ni2)) = 0 + 0 + 0 + 100 + 100 + 100 = 300,
respectively (i.e., Im(DSl(Ni1)) < Im(DSl(Ni2))).

According to Lemma 1, for a fixed ap(Ni )[0], the total
score Im(DSl(Ni ))due to nodes from Ni ismaximizedwhen
PPari = 0. In this case, ap(Ni )[z] = w(Ni )/(di + 1) for
z = 0 and ap(Ni )[z] = w(Ni )/(di ) for z ≥1. As men-
tioned above, for LASP to repeatedly select nodes from N j ,
we should have ap(N j )[z] > ap(Ni )[z], (i.e., ap(N j )[z] >

w(Ni )/(di + 1) for z = 0 and ap(N j )[z] > w(Ni )/(di ) for
z ≥ 1) andw(N j ) > ap(Ni )[z] (i.e.,w(N j ) > w(Ni )/(di +
1) for z = 0 and w(N j ) > w(Ni )/di for z ≥ 1). Follow-
ing the same reasoning as Lemma 1, the contribution of the
N j nodes in the score of the snippet computed by LASP
is minimized when w(N j ) is minimized (since PPar j is
considered only once for all chosen N j nodes). Thus, as to
minimize the holistic score of the LASP computed snippet
over the optimal score, we should minimize w(N j ) subject
to w(N j ) > w(Ni )/di (i.e., w(N j ) > ap(Ni )[z] for any
z); thus, set w(Ni ) ≈ w(N j ) · di . This corresponds to the
worst case for LASP. Now, in order to compute an upper
bound for the optimality ratio OPT/LASP shown in the frac-
tion above, we (i) set PPari = 0, as discussed in Lemma 1,
(ii) set PPar j = 0, as this can only increase the ratio, (ii) set
d j = di , as l − d j ≥ l − di , i.e., d j ≤ di (in order to select
at least the same number of nodes from N j as from Ni ) and
setting d j = di minimizes the denominator. Thus, we get:

OPT

LASP
≤ 0 + (l − di ) · w(N j ) · (di )

0 + (l − di ) · w(N j )
≈ di (7)

Obviously, the above ratio is maximized for di = d, i.e.,
Ni is at the maximum depth of the OS tree; thus, d is the
worst-case ratio between the qualities of the snippet com-
puted by LASP compared with the optimal snippet. Note
that in all our case studies, d ≤ 3. ��
5.1.1.1 Discussion on Rival Ni and N j Sets We now show
that the case of rival sets Ni and N j is the worst case for
LASP and that the relaxation of the assumptions about these
rival sets can only be in favor of LASP, thereby establishing
the d optimality ratio.
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When the rival sets have at least l−di (resp. l−d j ) siblings
with common w(.) scores, this will result in the worst case.
In our proof, we assume that the two rival sets consist of at
least l − di (resp. l − d j ) siblings carrying the same score.
This is because only such sets can maximize the maximal
difference between two sets. Recall that Ni and N j represent
the optimal and worst case, respectively. For instance, let us
assume thatwe have two Ni sets Ni1 and Ni2 consisting of l/2
nodes carrying equal score (i.e., not all Ni nodes are siblings)
corresponding to two respective PPari1 and PPari2. Then,
the optimal solution will include the two respective sub-trees
where the additional PPari2 path will be an overhead we
did not have in the original case. Similarly, if we assume
we have only one set Ni where its nodes do not have the
same score, then this may dictate the selection of nodes from
other sub-trees (similarly to the case with two Ni sets), and
we will end up again with an additional PPari2 overhead.
Analogously, we can show that if the N j nodes have different
parents belonging to different paths, such that ap(N j )[z] <

w(n j ) for a z ≥ 1, this can only improve the score of LASP’s
solution and thus reduce its approximation loss.

Rival sets should consist of diverse graph nodes (i.e.,
impact of Diversity and Proportionality). Let us assume the
case where some nodes in the rival Ni or N j sets correspond
to the same graph node, e.g., g(N j,p) = g(N j,q). The inclu-
sion of a node (from either set Ni or N j ) will still have no
impact on the proved lower bound. The reason is that the
addition of a node in the result can only result in the possible
reduction of the w(.) scores of the unselected nodes and the
respective ap(.) scores. This reduction will disqualify them
against unselected unique nodes which will retain the same
ap(Ni ) and w(Ni ) scores (resp. ap(N j ) and w(N j ) scores).
Since, we can always construct a worst case with unique
(l − di )-sized subsets of Ni and N j , the upper bound of the
approximation loss by LASP remains unchanged.

5.1.2 Optimality of LASP

Theorem 2 For equi relevance, if the nodes of an OS have
monotonically decreasing initial w(.) (w(ni |∅)) scores with
respect to their distance from the root (i.e., when the score
of each parent is not smaller than that of its children), then
LASP returns the optimal equi PSize-l OS or equi DSize-l
OS. We denote such an OS as monotonic OS(w).

Proof The optimal PSize-l or DSize-l should include the l
nodes with the largest possible w(.) score. Thus, we need
to prove that our algorithm can achieve this goal when
monotonicity on the w(.) scores hold. Firstly, we show that
sincemonotonicity holds onw(.), the respective ap(.) scores
should also be monotonic. For instance, consider the path
n1, n2, . . . , nk with w(n1) > w(n2) > · · · > w(nk). Then,
ap(n1) > ap(n2) > · · · > ap(nk) since for i < j we have

ap(ni ) = w(n1)+···+w(ni )
i and ap(n j ) = w(n1)+···+w(n j )

j . As
a result, j ·(w(n1)+. . .+w(ni )) > i ·(w(n1)+· · ·+w(n j )),
and finally,w(n1)+ . . .+w(ni ) > i · · ·w(n j ). Thus, we can
also easily see that the w(.) score of a node is greater than
the ap(.) scores of all its descendants.

Note that Equation 4 is monotonic for both size-l types
to the repetitions of the same graph nodes; i.e., w(ni )[1] >

w(ni )[2]. Also for equi relevance, we maintain final mono-
tonicity of descendants after repetitions. E.g., consider sib-
ling nodes, n1 and n2, which correspond to the same graph
node (i.e., sim(n1, n2) = 1). Note that, since these two nodes
are equal, they have common descendants (sub-trees). E.g.,
descendants dn1,1, . . . , dn1,l and dn2,1, . . . , dn2,l , respec-
tively, where sim(dn1,i , dn2,i ) = 1 for all i . Thus, if we
add n1 first, this will result in the reduction of w(n2) score
which can lead to two cases: In the first case, w(n2) score
is still larger than all its descendants, and thus, we still
have monotonicity on w(.) of the tree. In the second case,
the new score w(n2) is smaller than its descendant’s score,
e.g., w(n2) < w(dn2,i ) which also implies that w(n2) <

w(dn1,i ). In that case, a child node ofn1 will be selected since
it has largerw(.) than n2; e.g.,w(dn1,i ). Then, the respective
descendant of n2 will be reduced (w(dn2,i )) which should
give w(n2) > w(dn2,i ). This way, LASP will still include
nodes with monotonicity on w(.). (Note that for sim rele-
vance, the property of descendant’s equality may not hold,
and thus, we no longer have monotonicity on w(.), and thus,
LASP will not provide the optimal solution.)

Thus, this algorithmwill always select the unselected node
with the maximum w(.) score which is always a child of an
already selected node (i.e., a root of a tree of the unselected
forest). Note that because of the monotonicity properties
mentioned above, only child nodes of already selected nodes
can have the largest score. Thus, progressing iteratively, the
l nodes will comprise the optimal PSize-l or DSize-l OSs
since this set of l nodes will give the maximum score. ��
Theorem 3 For equi relevance, if the nodes of an OS have
monotonically decreasing local importance (li(.)) to their
distance from the root (we denote such an OS as monotonic
OS(li)), then LASP returns the optimal equi DSize-l OS.

Proof The dv(.) equation (in contrast to pq(.)) is monotonic
to li(.). That is dv(ni )[z] ≤ li(ni ) for any z. Thus, if an
OS is monotonic w.r.t. li(.), it will also be monotonic w.r.t.
w(.). Thus, based on Theorem 2, the algorithm will give the
optimal result.

Theorem 4 For equi relevance, and when we have a
monotonic OS(li) and all nodes have f r ≤ α + 1, then
LASP returns the optimal equi PSize-l OS.

Proof The pq(.) equation (in contrast to dv(.)) is not always
monotonic to li(.). It is only monotonic when f r ≤ α + 1
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that gives a w(.) in [0, 1], and thus, for these frequencies,
pq[z] ≤ li . Thus, since the OS is monotonic w.r.t. li(.), it is
also monotonic w.r.t. pq(.). Thus, based on Theorem 2, the
algorithm will compute the optimal result also in this case.

6 2-LASPe

The runtime cost of LASP is dominated by the numerous
updates it applies; each time we add a node (or path) to the
snippet, we have to update up to twice each of the remain-
ing nodes. Thus, we introduce the 2-LASPe algorithm, an
enhancement of LASP, that aims to reduce where possible
such updates. In a nutshell, 2-LASPe facilitates update reduc-
tions at both UpdateRemPaths() and UpdateRelScores()
phases. The algorithm remains, like LASP, general and can
address both types of size-l and relevance. Algorithm 2 illus-
trates the differences of the two functions from the respective
original functions of the LASP algorithm, whereas Fig. 5
illustrates an example.

We propose to relax LASP by averaging w(.) pairs of
nodes (hence the prefix 2 to the name of the algorithm).
Namely, we take the average between the current node and
the parent instead of the whole path from the current node to
the root. As a consequence of this relaxation, updates will be
required only on the affected pairs rather on the whole path
to the root. Recall that the rationale of considering the aver-
age from each node to the root in LASP was to exploit nodes
lower on the tree with larger scores than their ancestors. We
observe that because of the proposed equations, we expect
recurrent monotonicity in theOSs; i.e., recurrent cases where
the w(.) of the parent is bigger than that of its child. Recall
that li(.) = a f (.) · gi(.) where a f (.) is monotonic by defi-
nition, and additionally, both dv(.) and pq(.) equations are
monotonic to z (and additions of similar nodes), where z is
expected to be larger at the bottom levels of the OS tree.

Algorithm 2 2-LASPe Algorithm
2-LASPe (l, nDS)

UpdateRemPaths (pi )
1: for each child n j of nodes in pi do
2: update ap(n j ) on the OS tree
3: update ap(n j ) on W

UpdateRelScores (pi )
1: for each node ni in pi do
2: for each similarity edge se(ni , n j ) (of ni with an unselected n j

node) do
3: update w(n j ) considering sim(n j , ni )
4: deleteEdge(se(ni , n j ))
5: for each child nk of n j do
6: update ap(nk) on OS tree using w(n j )

7: update ap(nk) on W

Secondly, we introduce a similarity index on the OS tree,
denoted as simOS tree (see Fig. 5) (instead of using the HFr
of LASP and 2-LASP [17]). This simOS tree is generated
during the OS Generation() function (line 1). For each pair
of nodes that there exists a similarity, we add a similarity edge
carrying the similarity value, denoted as se(ni , n j ). Using
the similarity edges, we can limit checks of newly added
nodes against only unselected nodes that we know they have
a similarity (thus the suffix e for edge to the name of the
algorithm). This is in contrast to LASP which checks against
all unselected nodes.

Let us first demonstrate the updates due to removals of
paths. At each addition, we update only pairs of scores, i.e.,
ap(.) between the affected node and its parent (instead of all
remaining paths toward the root). For example, after adding
path p11, in 2-LASPe, we only need to update nodes at level
1, except the includedn5 node (since noden1 is removed). Let
us now demonstrate the updates due to relevance between the
selected path and unselected nodes. We can easily determine
from the simOS tree that p11 path’s nodes have similarity
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Fig. 5 2-LASPe algorithm (annotated with similarity edges of unselected nodes). a The initial OS (and simOS). b First update. c Final update
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Fig. 6 2-LASPe: example of rival Ni and N j sets (with di = 2). a The initial OS. b First update

with n4, n7 and n9 nodes and thus update them according
to their similarities. Since at each iteration, we only need to
check the similarity between a newly selected node against
all unselected nodes, we delete all similarity edges of a newly
selected node (line 4). Thus, after the first update and removal
of p11 path, similarity edges of n5 and n11 nodes are deleted
from the simOS tree.

6.1 Analysis

The worst-case complexity of this algorithm remains the
same as that of LASP. However, in practice 2-LASPe is much
faster; for instance, for an exemplary OS of size 735 and
l = 50, LASP conducts 24,267 updates (in 145 ms), whereas
2-LASPe performs only 214 updates (in 14 ms), resulting to
snippets of similar quality. We can easily show that all opti-
mality theorems that hold for LASP also hold for 2-LASPe.
Empirically, 2-LASPe provides snippets of almost the same
quality as LASP. Below, we prove the approximation lower
bound of this algorithm.

We also investigated the 3-LASPe algorithm (i.e., averag-
ing the score of a nodewith that of its parent andgrandparent).
We found that 3-LASPe is slower than 2-LASPe as it requires
more operations, while again giving results of similar effec-
tiveness and quality as 2-LASPe and LASP. Note that LASP
is in fact a 4-LASPe algorithm for the DBLP and Google+
GDSs that we use in our experiments, as both graphs have a
maximum path length 4.

6.1.1 Lower bound of 2-LASPe approximation

Theorem 5 The 2-LASPe is a d · l−2
l−1−d -approximation algo-

rithm for l > d + 1, where l and d are the required size
of snippets and the maximum depth of GDS, respectively.
Namely, the ratio of the optimal Im(.) (denoted as OPT)
over the lower bound of an Im(.) generated by the 2-LASPe
(denoted also as 2-LASPe) is only d · l−2

l−1−d times larger.

Proof We follow the same strategy as in LASP lower bound
calculation; namely using rival sets Ni (for the optimal result)
and N j (for the approximate result) (Fig. 6).

Let Ni have the following common properties as in the
LASP proof, i.e., it consists ofmore than l sibling and diverse
nodes, and all nodes have a common score,w(Ni ). In contrast
to the LASP algorithm, where the approximation error is
maximized when Ni is at the lowest depth d of the OS tree,
for 2-LASPe, the error is maximized when Ni is at depth 2.
Since, when di is minimized, the number of Ni nodes to be
included is maximized, and thus, the optimal snippet score is
also maximized. di = 2 is the minimum depth that facilitates
ap(Ni )[z] = w(Ni ) for all z (even after the addition of the
first path to an Ni or N j node). Note that for a smaller di , e.g.,
for di = 1, we have ap(Ni )[z] = ap(Ni )[0]/2 = w(Ni )/2
for z ≥ 1 which reduces the holistic score. Thus, we assume
that Ni is at depth 2. As before, we use PPari (resp, PPar j )
to refer to the sums of w(.) scores of all nodes from the OS
root until the parents of Ni (resp. N j ) set. The OPT score is
maximized when PPari = 0, since as discussed in LASP
proof, for a fixed ap(Ni )[0], the PPari = 0 maximizes
the score of the optimal snippet (Lemma 1). Thus, we get
the maximum score for the optimal snippet when PPari =
0, di = 2 and l ≥ 2. For instance, for l = 5 and di = 2, we
have Im(DSl(Ni )) = 0 + 0 + 100 + 100 + 100 = 300.

Unlike in LASP algorithm, N j will result in the worst
case when the N j nodes are leaves at maximum depth d and
belong to separate paths with PPar j = 0, instead of being
siblings (see the example of Fig. 6). We assume that the w(.)

scores of N j nodes are all equal and marginally larger than
the w(.) scores of the Ni nodes (so that they are selected
over Ni nodes), i.e., we assume w(Ni ) ≈ w(N j ). Analo-
gously, when d j is maximized, the number of N j nodes to
be included is minimized, and thus, the approximate score is
also minimized. Similarly, we have ap(N j )[z] > ap(Ni )[z]
for any z (even after the addition of the first path to an N j

node since it does not now affect ap(.) scores). And also,
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2-LASPe score is minimized when PPar j = 0, since apart
from N j nodes no other node contributes to the score.

We can easily see that the two sets are rivals and 2-LASPe
will wrongly select N j nodes. As we can include only � l−1

d �
nodes from the N j set, we have:

OPT

2 − L ASPe
= 0 + (l − 2) · w(Ni )

0 + � l−1
d � · w(N j )

≈ l − 2

� l−1
d � ≤ l − 2

l−1
d − 1

≈ d · l − 2

l − 1 − d
.

(8)

Assuming that l > d + 1, it makes the denominator in the
above formula positive. Recall that in most cases d ≤ 3 and
l > 10; therefore, the assumption is valid in typical settings.

We can see that the discussion in LASP about the effect
of alternative rival sets and non-diverse graph nodes hold
here: Rival sets Ni and N j must consist of (1) at least l − 2
and l − d nodes, respectively, with common score w(.) and
(2) diverse nodes in order to maximize the approximation
loss of 2-LASPe. Also, the Ni set should consist of sibling
nodes. ��

7 Prelim-l algorithms

The aforementioned algorithms operate on the complete OS.
Inspired by the prelim-l approach [15], we propose to pro-
duce a subset of the OS, denoted as DPrelim-l (or PPrelim-l)
OS, that prunes nodes from the OS which have low proba-
bility to be considered for the size-l OS; this saves a lot from
the OS generation time and the consequent size-l OS com-
putation time. Note that the prelim-l generation approach
of [15] considers the inclusion of the top-l nodes, i.e., the l
nodes with the highest li(.) in the OS (allowing their repe-
titions); for clarity, we refer to this algorithm as VPrelim-l.
The direct application of VPrelim-l is inappropriate here,
especially for the PPrelim-l OS, for the following three rea-
sons: (1) it allows the consideration in the top-l set of nodes
repeatedly which is against the diversification requirements
of PSize and DSize; (2) it fails to manage the non-monotonic
relationship between w(ni |.) and li(ni ) of proportionality
(e.g.,w(ni |∅) > li(ni )), which requires the challenging esti-
mation of similarity among nodes (and frequency per node)
in the OS; and (3) it does not facilitate further pruning of
nodes that have similarity with already added nodes (or are
included multiple times).

Recall, however, that the two properties, proportionality
and diversity, are based on different equations and thus have
different properties in measuring the w(.) score. More pre-
cisely, the proportionality equation is more challenging as it
requires the apriori knowledge of similarity between nodes
(and frequency of nodes) in an OS in order to produce w(.)

scores. Thus, we first present more comprehensively a gen-
eralized version of the VPrelim-l approach, which addresses
proportionality. This algorithm, denoted as PPrelim-l, con-
siders the similarity/frequency and respective upper bounds
of nodes in an OS, in order to produce the so called PPrelim-l
OS. Then, we present more synoptically the DPrelim-l algo-
rithm with the required specializations and simplifications in
order to produce DPrelim-l OS.

7.1 PPrelim-l

The computation of the optimal PSize-l OS is very expen-
sive and, as a consequence, so is the computation of any
PPrelim-l OS that is guaranteed to include the optimal PSize-
l OS. Thus, we resort to a heuristic that aims to generate
a PPrelim-l OS that includes at least the l diverse graph
nodes (i.e., nodes that their similarity is less than a thresh-
old d(θ)) with the largest w(ni |∅) scores (denoted as the
topwl set). The rationale is that while searching for topwl
and by appending the retrieved nodes to the PPrelim-l OS,
we will generate a good superset of the PSize-l OS. The
constraint of including only diverse nodes in topwl is nec-
essary in order to facilitate eventual diversity. We generate
the PPrelim-l OS by extending the complete OS generation
algorithm (Algorithm 4, described in Sect. 2.1 and in [13]) to
include three pruning conditions. We traverse the GDS graph
in a breadth-first order, according to Algorithm 3. For this
purpose, cheap pre-computed indexes, variables and data
structures are employed. Hereby, we describe the algorithm
by introducing the (1) pre-computed indexes per relation and
nDS, (2) variables and data structures, and (3) the pruning
conditions that are used as to construct the algorithm. We
try to describe these terms, where possible, in the order they
appear in the algorithm. Figures 7 and 8 illustrate an example
and Table 4 summarizes the notation we are using.

The calculation of sim relevance requires more time (i.e.,
quadratic; as we have to compare each node against all
remaining nodes); in comparison with equi relevance which
simply requires counting the frequency of graph nodes.
Thus, we address the two relevance types separately. For
instance, for sim relations, we rely mainly our pruning on
pre-computed indexes (e.g., mw(nDS, Ri ) to be described
shortly), whereas for equi relations, we achieve further prun-
ing by using online retrieved information (e.g., cmFr(Ri ) to
be described shortly).

7.1.1 Index per GDS relation

Our PPrelim-l OS generation technique uses three indexes
(i.e., bounds) for each GDS relation Ri , which are pre-
computed. max(Ri ) is the maximum value of li(.) in Ri .
mmax(Ri ) is the maximum value of max(Ri ) of all Ri ’s
descendant nodes in GDS or 0 if Ri has no descendants
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n1(a1)
0.60
0.33
0.20

n3(p3)
0.12
0.60
0.07

n4(p4)
0.10
0.33
0.03

n2(p2)
0.22
0.50
0.11

n5(pb1)
0.24
0.33
0.08

n7(pc1)
0.37
0.50
0.18

n9(cy1)
0.25
0.33
0.08

n6(pb2)
0.19
0.60
0.11

n10(ca1)
0.60
0.66
0.40

n15(cy2)
0.90
0.33
0.30

n17(ca3)
0.27
0.66
0.18

n16(ca1)
0.60
0.66
0.40

0.8

0.8

0.7

0.8

11

n8(pc2)
0.17
0.50
0.18

n11(ca2)
0.19
0.33
0.06

n13(pc4)
0.19
0.60
0.11

n12(pc3)
0.24
0.33
0.08

n14(pc5)
0.19
0.33
0.06

n19(pc5)
0.19
0.60
0.11

n21(cy3)
0.19
0.33
0.06

n18(pb3)
0.21
0.33
0.07

n20(pc6)
0.15
0.33
0.05

n22(ca3)
0.27
0.66
0.18

n24(c1)
0.13
0.50
0.07

n25(c2)
0.13
0.70
0.09

n26(c3)
0.15
0.33
0.05

0.80.8

Fig. 7 PPrelim-l example for l = 5 (the complete OS, the PPrelim-l
OS and the topwl set). Edges between nodes indicate their similar-
ity. Nodes are annotated with their li(.), pq(.) and w(.). Nodes with

low transparency are pruned nodes (e.g., n8, n11), shaded nodes are
the topwl set (e.g., n1, n7) and the rest are the remaining tuples of the
PPrelim-l OS (e.g., n2, n3)

Author (equi)
1.05, 7.38,

1, 1
(1), 1,1

mw(nDS, Ri)=0.20
mmw(nDS, Ri)=0.4

 Paper (sim)
8.82, 7.38, 
1, c(Paper)
(3), 1, ( )

mw(nDS, Ri)=0.11
mmw(nDS, Ri)=0.4

Conference (sim)
0.22, 0,
c(Paper), ()
( ), 3, 2

mw(nDS, Ri)=0.09
mmw(nDS, Ri)=0

Co-author (equi)
0.86, 0,
c(Paper), ( )
( ), 3, 2

mw(nDS, Ri)=0.4
mmw(nDS, Ri)=0

mw(nDS)=0.4
mFr(nDS)=2

ConfYear (equi)
0.84, 0.22,

c(Paper),c(Paper)
(3), 3, 2

mw(nDS, Ri)=0.3
mmw(nDS, Ri)=0.09

max(nDS)=0.9

PaperCites (sim)
7.38, 0, 
c(Paper), ( )
( ), 3, 2

mw(nDS, Ri)=0.18
mmw(nDS, Ri)=0

PaperCitedBy (sim)
7.38, 0, 
c(Paper), ( )
( ), 3, 2

mw(nDS, Ri)=0.11
mmw(nDS, Ri)=0

Fig. 8 DBLP author GDS, annotated with relation indexes: (relevance
type),max(Ri ),mmax(Ri ), UBFr(Ri ), c(Ri ), and nDS indexes for the
example of Fig. 7: (c(Ri )), UBFr(Ri ), mFr(nDS),mw(nDS, Ri ), etc.)

(i.e., Ri is a GDS leaf node). Finally, UBFr(Ri ) is the upper
bound of joins a node in Ri can have with any nDS. Dur-
ing preprocessing, we can determine only for some cases
these bounds, e.g., when up to 1 node from a relation (e.g.,
RPaper ) can only join with nDS. Otherwise, we assume
infinite joins (e.g., the same co-author may appear in an
unbounded number of papers) and setUBFr(co-author)= ∞.
In order to facilitate the calculation of UBFr(Ri ), we also
introduce the c(Ri ) variablewhich is the summation of tuples
from Ri that can join with nDS. Thus, for N:1 relationships,
c(Ri ) = c(RPari ), where c(RDS) = 1 and RPari is the
parent relation of Ri . Thus, given c(RPari ) for cases where

Table 4 Notations of the PPrelim-l Algorithm

Notation Definition

topwl set The l diverse graph nodes with the largest w
scores

max(Ri ) The maximum value of li(.) in Ri

mmax(Ri ) The maximum max(Ri ) in all Ri ’s descendant
nodes or 0 if Ri has no descendants

UBFr(Ri ) The upper bound of joins a node in Ri can have
with any nDS

mw(nDS, Ri ) The maximum w score of Ri nodes in the nDS

OS

mmw(nDS ,Ri ) The maximum mw(nDS, Ri ) of all Ri ’s
descendents or 0 if Ri has no descendants

mw(nDS) The maximum w score of nodes in the nDS OS

mFr(nDS) The maximum frequency of any node in the OS

R(ni ) The relation ni belongs to

Ri (n j ) The subset of Ri that joins with n j

c(Ri ) The summation of nodes in Ri that can join nDS

UBw(n j , Ri ) The upper bound of w in Ri (n j )

dUBw(n j , Ri ) The upper bound of w from all Ri ’s descendants
that join with n j

UBFr(co-author)= ∞, we estimate UBFr(Ri ) as a func-
tion of c(RPari ), i.e., UBFr(Ri ) = c(RPari ) (denoted
as ∞ → c(Ri ) in Fig. 8); this association will be use-
ful later, during the online calculation of tighter frequency
bounds. Also note that since we only need c(RPari ), we do
not need to calculate c(Ri ) for leaf nodes (thus, we denote
their c(.) as () in Fig. 8). Finally, we define and use index
dUBFr(Ri ), which is the upper bound of joins of a node
belonging to any descendant relation of Ri that can have
with any nDS.
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Algorithm 3 The PPrelim-l OS Generation Algorithm
PPrelim-l (l, GDS)
1: t = 0; n j = nDS ; Wl = {}; Q = {}
2: addNode(n j )
3: while !IsEmptyQueue(Q) do
4: Xn j = n j ; n j = deQueue(Q)
5: for each child relation Ri of R(n j ) in GDS do
6: if (UBFr(Ri )> 1) then
7: if (R(n j ) �= R(Xn j )) then � n j ∈ new relation
8: cmFr(Ri ) = 0; i = c(RPari )
9: UBFr(n j , Ri )=min{− − i+cmFr(Ri ), mFR(nDS)}
10: else
11: UBFr(n j , Ri ) = 1
12: UBw(n j , Ri )= min{mw(nDS, Ri ), f1(min{max(Ri ),

max(nDS)}, min{(mFr(nDS), UBFr(Ri ), UBFr(n j , Ri)})}
13: dUBw(n j , Ri )= min{mmw(nDS, R1), f2(min{mmax(Ri ),

max(nDS)}, min{(mFr(nDS), dUBFr(Ri )})}
14: if !(t ≥UBw(n j , Ri ) && (t ≥dUBw(n j , Ri ))) then � Prun.

Cond.1
15: if (t ≥dUBw(n j , Ri )) then � Prun. Cond.2
16: Ri (n j ): get up to diverse l nodes with UBw(.) > t

where UBw(.) = f3(.)
17: else
18: get Ri (n j )

19: for each tuple ni of Ri (n j ) do
20: if Ri is equi relation then
21: if (UBFr(Ri )> 1) then
22: UpdateHFr(ni )
23: UpdatecmFr(ni )
24: w(ni )[1]= f (li(ni ), HFr[g(ni )]. f r , 1) � Eq.4
25: if !((HFr[g(ni )]. f r > 1) && (w(ni )[2] < t) && (t ≥

dUBw(n j , Ri ))) then � Prun. Cond.3
26: addNode(ni )
27: else if Ri is sim relation then
28: addOnHSi(ni )
29: for each nk in HSi do
30: if sim(ni , nk) then
31: Update (w(ni |∅), sim(ni , nk))
32: Update (w(nk |∅), sim(nk , ni ))
33: cSim(ni ) =true
34: w(ni )[2] = f (w(ni |∅), 2) � Eq.4
35: if !(cSim(ni ) && (w(ni )[2] < t) && (t ≥

dUBw(n j , Ri ))) then � Prun. Cond.3
36: addNode(ni )
37: return PPrelim-l

addNode (ni )
1: EnQueue (Q, ni )
2: add ni on PPrelim-l as child of n j or as root if ni is nDS

3: if (w(ni )[1] > t) then
4: if ni is not similar with any nodes in Wl then
5: EnQueue (Wl , ni )
6: if (|Wl | > l) then
7: DeQueue(Wl )
8: if (|Wl | < l) then
9: t = 0
10: else
11: t =minimum(Wl )

7.1.2 Index per nDS node

During preprocessing, we also maintain a number of indexes
per nDS. mw(nDS, Ri ) is the maximum w(ni |∅) of any

node in Ri (note that this can be prohibitively expensive
to calculate online and can render the pruning ineffective).
For instance, in our running example for paper, we have
mw(nDS, Ri ) = 0.11.mmw(nDS, Ri ) is themaximum value
of mw(nDS, Ri ) of all Ri ’s descendants or 0 if Ri has no
descendants (leaf node) (it can cheaply be obtained from
descendants’ mw(nDS, Ri ). For example, for the paper rela-
tion, mmw(nDS, Ri ) = 0.4 due to mw(nDS, Ri ) = 0.4
of the co-author relation. max(nDS) is the maximum li(.)
for all nodes in an OS (excluding nDS); e.g., in Fig. 8,
max(nDS) = 0.9 is found in the ConfYear relation. Note
that this score overrides the maximum li(.) score of all
GDS relations (i.e., max(Ri ) and mmax(Ri )). mw(nDS) is
the maximum w(ni |∅) of any node in the OS (excluding
nDS). Similarly to max(nDS), this score is considered as the
upper bound of w(.) of all nodes of all relations (e.g., in our
running example, mw(nDS) = 0.4 is found in relation co-
author). mFr(nDS) is the maximum frequency of any node
in the OS that belongs to a relation with UBFr(Ri ) > 1,
where mFR(nDS) ≤ UBFr(Ri ). For instance, in our exam-
ple, mFr(nDS) = 2 (since ca1 and ca3 appear twice); which
is less than UBFr(Ri ) = 3; thus, we can use this as a tighter
bound and thus override the UBFr(Ri ) bound.

7.1.3 Variables and data structures

Let Ri (n j ) be the subset of Ri that joins with n j , and R(ni )
be the relation where to ni belongs. While processing n j

(in R(n j )) against a relation Ri with UBFr(Ri ) > 1, we
try to get a tighter bound than UBFr(Ri ) and mFr(nDS),
denoted as UBFr(n j , Ri ). For this purpose, we maintain
the current maximum frequency, denoted as cmFr(Ri ); a
node was found so far from Ri (i.e., from processing pre-
decessor nodes, n1, ..., n j−1, of n j against Ri , i.e., from
their respective Ri (n1), ..., Ri (n j−1) sets). For instance,
consider we are processing node n4 (p4) against the co-
author relation, node ca1 is the most frequent among all
Ri (n1), ..., Ri (n j−1) sets that were found so far since it
was found twice; thus, cmFr(Ri ) = 2. Given cmFr(Ri ),
UBFr(n j , Ri ) assumes that ca1 will appear in all the remain-
ing sets Ri (n j ), ..., Ri (n|Ri |) after processing n j . At the
beginning, UBFr(n j , Ri ) can be very loose, so we compare
it with mFr(nDS), to keep the minimum of the two (lines
6–11).

Another bound we use is UBw(n j , Ri ), which is the upper
bound of thew(ni |∅) score that can be obtained from Ri (n j )

(line 12) (this value will be useful as to facilitate Prun-
ing Condition 1). It is defined as the minimum of f1(.)
and mw(nDS, Ri ). The mw(nDS, Ri ) index can be a very
effective pruning tool for both relevance types. f1(.) aims to
facilitate further pruning for equi relations thus is defined as
follows: for sim relations are set to∞ (as we do not expect to
achieve a better bound than mw(nDS, Ri ) that can be practi-
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cally useful), whereas for equi relations are calculated using
Equation 4 for z = 1.

We denote as dUB(n j , Ri ) the upper bound of w(ni |∅)

of all nodes from Ri ’s descendant relations that can join with
n j or 0 if Ri has no descendants (and it will be useful in
facilitating Pruning Condition 2). Similarly to UBw(n j , Ri )
calculation, dUBw(n j , Ri ) can be defined as the minimum
of mmw(nDS, Ri ) and f2(.). f2(.) is also defined by Equa-
tion 4 for z = 1 (line 13). The mmw(nDS, Ri ) index can
be a very effective pruning tool for both relevance types.
Analogously, f2(.) aims to facilitate further pruning for equi
relations thus is defined as follows: for sim relations are set to
∞, whereas for equi relations are calculated using the given
parameters. Also note that, if Ri is a leaf node on GDS then
mmax(Ri ) = 0, and thus, dUBw(ni , Ri ) = 0. UBw(n j , Ri )
and dUBw(n j , Ri ) bounds are specializations of max(Ri )

and mmax(Ri ) that have been used in prelim-l [15] in prun-
ing conditions 1 and 2, respectively; however, they are tighter
bounds as they are specific for the given nDS.

Finally, we define the upper bound of w(ni |∅) score of a
node asUBw(ni ) (which will be useful during Pruning Con-
dition 2; line 16).We calculateUBw(ni ) using the respective
pq(ni |∅) produced by function f3 which is defined as
follows. For an Ri being an equi relation, pq(ni )[1] =
f3(li(ni ), UBFr(n j , Ri )). Whereas, for an Ri being a sim
relation, pq(ni |∅) = f3(((|OS(Ri )| −UBFr(n j , Ri )) ·
msim(ni )+UBFr(n j , Ri )·1) · li(ni )), where |OS(Ri )| is for
UBFr(Ri ) = 1 the amount of nodes of Ri in the OS
and for UBFr(Ri )>1 c(RPari ). msim(ni ) is the maximum
similarity of an ni node with any other node in the OS.
Namely, we assume that ni appears UBFr(n j , Ri ) times (thus
UBFr(n j , Ri )·1 similarity) and has the maximum similarity
with all OS(Ri ) nodes.

As we have already explained, we process sim and equi
relations separately. Thus, while processing equi relations,
wemaintain HFr , a hash table, which indexes for each graph
node the computed frequency in the OS so far (lines 22 and
23). And while processing sim relations, we maintain HSi
hash table which indexes the similarity of each OS node
against all other OS nodes (i.e.,

∑
n j∈OS sim(ni , n j )). The

update of HSi requires quadratic time as we need to com-
pare the similarity of each node against all previous nodes
already on HSi (lines 29-32). We also use the cSim(ni )
flag variable to indicate whether ni is similar to other nodes
(line 33). We also denote as w(ni )[2], the w(ni ) score given
another node with maximum similarity with ni has previ-
ously been added (lines 16 and 34); maximum similarity is
the equality similarity (thus the common use of the equi
notation).

We manage the retrieval of topwl set as follows. Let t be
the current smallest value of the topwl set (or 0 if topwl does
not contain l values yet). If the current tuple ni is greater
than t (line 3, function AddNode) and if ni is diverse to all

topwl nodes, then is added to the PPrelim-l and the l-sized
priority queueWl which manages the topwl set (AddNode(),
lines 4–11). For instance, inFig. 7, the shadednodes comprise
the final topwl set for the given OS. Note also that, although
node n16 has score larger than t = 0.18, it is excluded as it
is similar (equal) to node n10. Note that by considering the
computed similarity/frequency of a node ni so far, which is
less than or equal to actual similarity/frequency of ni , in fact,
we consider the lower bound of w(.).

7.1.4 Pruning conditions

Each time we further process a node n j , we employ three
pruning conditions:

– Pruning Condition 1. If t is greater than or equal
to the w(ni |∅) of all tuples of the current relation
Ri and all its descendants (i.e., t >UBw(n j , Ri ) and
t >dUBw(n j , Ri )), then there is no need to traverse the
sub-tree starting at Ri (line 14).

– Pruning Condition 2. We can limit the amount of tuples
returned by an Ri (n j ) join (i.e., by avoiding comput-
ing the entire join of n j with Ri ), if we can infer that
none of Ri ’s descendants (if any) can be fruitful for the
topwl (i.e., when t >dUB(n j , Ri ); line 15). Then, we
can extract only nodes that their upper bound w(ni |∅)

score, UBw(ni ), is greater than t (line 16).
– Pruning Condition 3. When Pruning Condition 2 holds,
we can safely extract only part of the join. However, it is
still possible that we extracted nodes which are similar
to already added on the PPrelim-l nodes, and thus, their
w(ni |n j1, . . . n jx ) will be actually used. Thus, we intro-
duce a new pruning condition that checks first if a node
ni is similar to an added node and then considers adding
it. For equi relations, we can easily detect equality by
accessing HFr . Whereas for sim relations, this is more
demanding (requiring quadratic time; lines 29-33), thus
we use the cSim(ni ) flag variable to detect similarity. For
both cases, we use a safe bound i.e., w(ni )[2], and we do
not add the node unless it is greater than t (lines 25 and
35). Recall that these scores are actually lower bounds
as they are produced by comparison against only already
retrieved nodes.

7.2 DPrelim-l OS

We simplify the previous algorithm by excluding all work
concerning calculating or upper bounding the frequencies of
nodes. For instance, indexes such as UBFr(Ri ), mFr(nDS)
and calculations of UBFr(n j , Ri ) are not required. We adjust
accordingly our algorithm to include these alterations (e.g.,
exclude calculations ofUBFr(n j , Ri ); functions (lines 12 and
13) use Equations 2 and 4, etc.).
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7.3 Analysis

In terms of cost, in theworst case, we need up to n extractions
of nodes, where n is the amount of nodes in the complete
OS. In practice, however, there can be significant savings if
the topwl tuples are found early and large sub-trees of the
complete OS are pruned. The PPrelim-l (resp. DPrelim-l)
OS does not essentially contain the optimal PSize-l (resp.
DSize-l) OS; in practice, however, we found that this is the
case in most problem instances. This means that the PSize-l
(resp. DSize-l) OS computation algorithms most likely give
the same results when applied either on the PPrelim-l (resp.
DPrelim-l) OS or the complete OS. Similarly to LASP and
2-LASPe algorithms, DPrelim-l and PPrelim-l algorithms
will produce optimal results (i.e., supersets of the respective
optimal size-l OSs) when we have a monotonic OS(li) and
monotonic OS(w), respectively. Note that PPrelim-l cannot
return an optimal solution when we have simply amonotonic
OS(li(.)) because the proportionality equation (in contrast
to the diversification equation) is not monotonic to li . The
following theorem proves the lower approximation bound
and that if the li(.) scores of nodes are monotonic then the
computed DPrelim-l OS will be optimal.

7.3.1 Lower bound of the PPrelim-l (resp. DPrelim-l)
algorithms

Theorem 6 The PPrelim-l (resp. DPrelim-l) algorithm is a
d · l−1

l−1−d -approximation algorithm for l > d+1, where l and
d are the required size of snippets and the maximum depth of
GDS, respectively. Namely, the largest possible score ratio of
the optimal size-l OS (denoted asOPT) that is computed from
the complete OS over the optimal size-l OS that is computed
from the PPrelim-l (or DPrelim-l) OS (denoted as prelim-l)
is d · l−1

l−1−d .

Proof We follow an analogous strategy as in LASP and 2-
LASPe lower bound calculation, namely, using rival sets Ni

(included in the optimal solution, but not in the PPrelim-
l OS) and N j (affecting the approximate solution). Recall
that according to the PPrelim-l computation algorithms, the
PPrelim-l OS contains the l diverse nodes with themaximum
w(.), denoted as topwl and all nodes along the paths from the
OS root to these nodes. The worst case happens when none
of the nodes of the topwl set is part of the optimal size-l OS at
and at the same time this results to the maximum loss. Thus,
we define Ni and N j as follows.

Ni is defined as a set of l sibling nodes with common
score at depth 1. This minimum depth (di = 1) allows the
inclusion of the maximum amount of Ni nodes. Based on our
analysis for 2-LASPe, this results in themaximum total score
for the snippet. N j consists of l nodes with common scores,
and these are the topwl nodes. Similarly to 2-LASPe, N j will

Nj,1
100.1

Nj,2
100.1

Nj,3
100.1

Nj,4
100.1

Ni

Nj

n7
0

n1
0

n6
0

n8
0

n9
0

Ni,1
100

Ni,2
100

Ni,3
100

Ni,4
100

n3
0

n2
0

n4
0

n5
0

Fig. 9 PPrelim-l: example of rival Ni and N j sets (withdi = 1, d j = d
and N j (topwl))

result to theworst case when the N j nodes are leaves at maxi-
mum depth d and belong to separate paths with PPar j = 0,
instead of being siblings (see the example of Fig. 9). We
assume that the w(.) scores of N j nodes are all equal and
marginally larger than the w(.) scores of the Ni nodes (so
that they are selected over Ni nodes in the Prelim-l OS),
i.e., we assume that w(Ni ) ≈ w(N j ). As we can include
only � l−1

d � nodes from the topwl set in the Prelim-l OS, we
can easily see that the score difference between OPT and
prelim-l is maximized when (i) PPari = 0, such that the
root does not count both in the optimal snippet and in the
snippet computed from the Prelim-l OS, (ii) PPar j = 0,
such that besides N j nodes, no other node contributes to the
score of the snippet from the Prelim-l OS, and thus, prelim-l
is minimized. Thus, we have:

OPT

prelim-l
= 0 + (l − 1) · w(Ni )

0 + � l−1
d � · w(N j )

≈ l − 1

� l−1
d � ≤ l − 1

l−1
d − 1

= d · l − 1

l − 1 − d

(9)

For instance, consider the example of Fig. 9, w(Ni ) =
100, d = 3, and l = 5; we have OPT : 0 + 100 + 100 +
100 + 100 = 400 and prelim-l: two paths to N j1 and to n3,
respectively: 0 + 0 + 0 + 100.1 + 0 = 100.1.

We assume that l > d + 1, which makes the denominator
in the above formula positive. If l ≤ d+1, then the N j nodes
should be chosen at depth l in order to include a single node
from N j , as opposed to multiple Ni nodes. In this case, the
ratiowill be l−1

1 , i.e., l−1.We can easily see that as discussed
in LASP, rival sets must consist of (1) diverse nodes (thus,
PPrelim-l approximation also holds for DPrelim-l) and (2)
have a common score w(.). ��

Finally, we can bound the approximation ratios of LASP
and 2-LASPe which apply on a PPrelim-l OS (or DPrelim-
l) OS, over the optimal solution in the complete OS,
by multiplying the approximation ratios of LASP and 2-

123



810 G. J. Fakas et al.

LASP, respectively, stated in theorems 1 and 5 by the ratio
OPT/prelim-l stated in Theorem 6. For example, a lower
upper bound for the approximation loss of LASP which
applies on a PPrelim-l OS compared to the optimal solution
on the complete OS is d · (d · (l−1)

l−1−d ) = d2 · (l−1)
l−1−d .

7.3.2 Optimality of PPrelim-l (resp. DPrelim-l) algorithms

Theorem 7 For equi relevance, if the local importance
scores of nodes (li(.)) aremonotonically non-increasingwith
respect to the distance of the nodes to nDS, then DPrelim will
produce the optimal DPrelim-l OS (i.e., a superset of the
optimal equi DSize-l OS).

Proof The DPrelim OS will include the (1) topwl set, i.e., l
distinct nodes with the largest w(.)[1] scores where t is the
minimum (topwl) and (2) also all repetitions of topwl nodes
with w(.)[2] > t , denoted as repwl (since we only prune
nodes with w(.)[1] < t and w(.)[2] < t in pruning condi-
tions 2 and 3, respectively). When we have a monotonic OS,
we can produce the optimal DSize-l OS by using the LASP
algorithm (Theorem 3) as follows. Initially, wewill include j
distinct nodes with the largest li(.) scores (as they also corre-
spond to the largestap(.) sincew(.)[1] = li(.), where j < l),
where a subset of these j nodes may have f r > 1. All these
nodes aremembers of the topwl by definition. Then, consider
that if the next node to be added (according to LASP) is a rep-
etition of a node (i.e., we include it considering its w(.)[2]);
then, this node is member of repwl, as by contradiction it
should have w(.)[2] > t (as otherwise another distinct node
would have been selected). Thus, we conclude that the opti-
mal DSize-l will comprise nodes from either topwl or repwl
nodes which are included in DPrelim-l by definition. (Note
that for the same reason as in Theorem 2, this algorithm can-
not provide an optimal solution for sim relevance.) ��

Theorem 8 Similarly, based on theorems 4 and 7 we can
easily see that the PPrelim can produce an optimal PPrelim-
l OS for equi relevance if we have a monotonic OS(li(.)) and
all nodes have f r(ni ) < α + 1.

8 Experimental evaluation

We experimentally evaluate the proposed snippets and algo-
rithms.We emphasize on effectiveness comparisons between
the two types of diversified snippets, the two types of rel-
evance and also against the non-diversified size-l snippets
[15]. Firstly, we thoroughly investigate the effectiveness and
usability of the produced snippets with the help of human
evaluators. Then, we evaluate the quality of the size-l OSs
produced by the greedy heuristics. Finally, we comparatively
investigate the efficiency of the proposed algorithms.

We used two databases: DBLP and Google+. The two
databases have 3M and 14M tuples and occupy 513MB and
800MB on the disk, respectively. Google+ dataset was con-
structed by combining real data extracted fromGoogle+ (i.e.,
users, activities and reactions which are publicly available).
Followers and circleswhichwere dealt as private byGoogle+
(and thuswere publicly unavailable) were generated from the
synthetic SNAP dataset1. We calculate global importance by
using global ObjectRank [3]. For the DBLP dataset, we use
the default setting used in [3] and [15], i.e., the GA shown in
Fig. 17(a) and d = 0.85 and for Google+, the GA presented
in Fig. 17(b) and also d = 0.85. We calculate a f (.) as in
[15]. We used an expert to classify each relation as a sim
or equi . For sim relations, we compare the respective nam-
ing attributes only (where naming attributes are as defined in
[13], e.g., names, paper’s title). We used an expert to define
these naming attributes (alternatively, we can semi-automate
this by using the attribute clustering approach of [13]). More
precisely, we used Jaccard distance on the respective naming
attributes (preliminary experimentation revealed that alter-
native techniques (such as IR) have insignificant impact on
the overall effectiveness results; thus, we present results only
using Jaccard). Recall that an equi size-l considers only equi
relevance, whereas a sim size-l considers both sim and equi
relevance. For proportionality, we use α = 2. We used Java,
MySQLandaPCwith anAMDPhenom96502.3GHz (quad-
core) processor and 8GB of memory.

8.1 Effectiveness

We conducted an effectiveness evaluation with the help
of human evaluators. The evaluators were professors and
researchers from our universities. None of our evaluators
were involved in this paper. Because of the complexity of
the evaluation (we have to compare five different types of
snippets), we used evaluators with expertise in the topics we
investigate. In particular, since the DBLP database includes
data about real people, we asked the DSs themselves where
possible (i.e., eleven authors or students of authors listed in
DBLP) to participate in this evaluation. The rationale of this
evaluation is that the DSs themselves (even their students)
have the best knowledge of their work and can therefore pro-
vide accurate summaries. For Google+, we presented ten
random OSs to nine evaluators. First, we familiarized them
with the concepts of OSs in general and the five types of
size-l OSs. Specifically, we explained that a good size-l OS
should be a standalone and meaningful synopsis of the most
important information about the particular DS. In addition,
we explained that DSize-l OSs and PSize-l OSs consider
diversity and proportionality, respectively, and the difference
between the two relevance types.However,we avoided to dis-

1 http://snap.stanford.edu/data/egonets-Gplus.html.
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Fig. 10 Effectiveness (i.e., recall = precision). a DBLP author. b
Google+ user

cuss the advantages or disadvantages of these combinations
of types as to avoid any bias. In order to assist themwith their
tasks, we provided them useful information per node, such as
f r(.), li(.), dv(ni |∅), pq(ni |∅) andw(ni |∅). For instance,
we provided them, with the amount of times the co-author C.
Faloutsos appears in the M. Faloutsos OS, his li(.), etc. We
also provided summarized ranked tables (similar to Tables 2
and 3 at the end of each OS) with the top-10 most frequent
and top-10most important nodes and their respectivew(ni |.)
scores.

8.1.1 Precision and recall

We provided evaluators with OSs and asked them to DSize-l
and PSize-l them using both types of relevance (i.e., equal-
ity and similarity) for l = 10, 15, 30. Figure 10 measures
the effectiveness of our approach as the average percentage
of the nodes that exist in both the evaluators’ size-l OS and
the computed size-l OS by our methods. This measure cor-
responds to recall and precision at the same time, as both
the OSs compared have a common size. Figure 10a, b plot
the recall of the DSize-l and PSize-l for DBLP author and
Google+ user GDS’s Fig. 18. On average, the effectiveness
of DSize-l and PSize-l OSs ranges from 67 to 82% for all
cases, which is very encouraging. The results of Fig. 10 are
obtained using the LASP algorithm (as the BF-l algorithm
was prohibitively expensive).Weomit results obtained byour
other approximate algorithms as they do not vary from these
results. For instance, the 2-LASPe algorithm gave almost
identical results as LASP and the use of DPrelim-l OSs or
PPrelim-l OSs had no impact on effectiveness. As we show
later, they have very minor impact on the quality of the com-
puted snippets.

8.1.2 Usability test

We conducted a comparative study of the usability of the
five types that verifies users’ preference for sim over equi
relevance and DSize-l and PSize-l OSs over size-l OSs. In

summary, the evaluation reveals the usability superiority of
sim PSize-l OSs over all other types. Usability is the ease of
use and learnability of a human-made object; namely, how
efficient it is to use (for instance, whether it takes less time
to accomplish a particular task), how easy it is to learn and
whether it is more satisfying to use.2 More precisely, for a
given OS, we measured the ease of use of all types through
a usability test. We presented to users the various versions
of size-l OSs in a random order to avoid any bias, and we
also gave them six tasks to complete for each OS. Then, we
asked them to give a score in a scale of one to ten and also
to justify in their answers, where possible, the usability of
the five approaches when completing these tasks. Namely, to
score them considering (1) the ease of accomplishing each
task, (2) how easy and (3) satisfying are to learn and use.

More precisely, the first task (T1) was to score the gen-
eral use of all types; namely, which one they prefer as a
representative and informative snippet. For this purpose, we
emphasized again that a snippet should be short, stand-alone
and a meaningful synopsis of the most important and repre-
sentative information about the particular DS; we avoided to
discuss any advantages/disadvantages. The rest of the tasks
were to extract information about the DSs. For the DBLP
author, Task 2 (T2) was to determine the most frequent co-
authors of a given author (e.g., whether C. Faloutsos and S.
Krishnamurthy are among the most frequent collaborators of
M. Faloutsos). Task 3 (T3) was to determine the most impor-
tant co-authors (e.g., whether C. Faloutsos and S.Madden are
among the most important co-authors of M. Faloutsos). Task
4 (T4)was to determine themost frequent journal/conference
the DS has published. Task 5 (T5) was to determine the most
frequent topic of an author’s papers (i.e., repeated set of key-
words appearing in author’s papers). Finally, Task 6 (T6) was
to determine the most frequent topic appearing in papers cit-
ing an author’s papers. Analogous tasks were used for the
Google+ user. Namely, T2 was to determine a couple of the
most frequent users in the DS’s circles; T3 was to determine
a couple of the most important users in DS’s circles; T4 was
to determine the most frequent user making comments on
DS’s activities; T5 was to determine the most frequent topic
of the DS’s comments and T6 was to determine the most
frequent topics of DS’s activities. Note that for comparison
purposes, we maintain an analogy between the respective
tasks of the two databases, e.g., T2 of both databases aim
to determine the most frequent co-authors/users associated
with the DS, whereas T3 to determine the most important
co-authors/users, etc.

Figures 11 and 12 average the evaluators’ usability scores
of all methods per GDS, per task and per l. More precisely,
respective subfigures (a) represent scores for l = 15, (b) for
l = 30, and (c) the average of all tasks per l. The results show

2 www.wikipedia.org/wiki/Usability.
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Fig. 11 Usability on DBLP author using equi and sim relevance. a l = 15. b l = 15. c Average per l
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Fig. 12 Usability on Google+ user using equi and sim relevance. a l = 15. b l = 15. c Average per l

that evaluators preferred firstly sim PSize-l OSs, secondly
equi PSize-l OSs, then sim and equi DSize-l OSs and lastly
size-l OSs for both datasets. They also preferred size l = 30
over l = 15. For instance for the author GDS, the average
scores of all tasks and both values of l, for sim PSize-l OSs
is 7.5, for equi PSize-l OSs is 7.1, for sim DSize-l OSs is
6.7, for equi DSize-l OSs is 6.6 and finally for size-l OSs
is 6.0. Evaluators expressed very similar preference for equi
and sim DSize-l OSs because the snippets of these two types
are almost identical (i.e., their constituent nodes are almost
the same). The reason is that for the specific DBLP author
GDS, both relevance types equi and sim result in the same
DSize-lOSs, as the sim relevancewill only impact toward the
avoidance of including papers or conferences with frequent
textual similarity to already added nodes (whichwas not very
often in these cases).

The evaluators also provided justifications for their scores.
We summarize them for each type and l, and we also analyze
their reflection on the given tasks. The evaluators explained
that in general, they prefer the concept of PSize-l OSas it also
considers frequent nodes and topics; this is a property other
types do not consider. This is evidenced by the superiority
of the usability of PSize-l for tasks T2, T4, T5 and T6, since
these tasks consider the frequency of nodes and topics. In
addition, the evaluators explained that they found useful the
results considering the frequency of keywords (i.e., frequent
topics); this is evidenced by high scores of sim PSize-l for
tasks T5 and T6 which address the frequency of topics in the

results. However, as they pointed out, although the inclusion
of repeated frequent items or topics is informative, it comes at
the cost of excluding other important nodes. They found that
a DSize-l OS is very useful in covering the most important
elements of an OS (i.e., evidenced by high scores of DSize-l
for Task 3); however, they pointed out that rare but important
elements may appear which again can be misleading to some
extent. They found the non-diversified size-l summaries [15]
moremisleading as very important nodes are too dominant in
them. The evaluators stated that l values of around 30 are the
most appropriate, since the corresponding snippets include
sufficient descriptive information about the corresponding
OSs, giving a better representation of frequent and important
information, and without being overwhelmingly large. This
is also evidenced by Figs. 11c and 12c.

8.2 Quality of snippets

We now compare the holistic importance Im(.) scores of
DSize-l and PSize-l OSs produced by the greedy methods.
More precisely, the results of Fig. 13 represent the average
holistic scores for ten randomOSs perGDS. The average size
(i.e., the amount of nodes) of OSs is also indicated (denoted
as (|OS|)). The results show that in most cases, the results
of LASP and 2-LASPe are of very similar (or even identi-
cal) quality, i.e., they have similar (or equal) holistic Im(.)

scores. The evaluation also reveals that using the DPrelim-l
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Fig. 13 Quality on DBLP and Google+. a equi DSize-l author
(|OS| = 707). b sim DSize-l author (|OS| = 707). c equi PSize-l
author (|OS| = 707). d sim PSize-l author (|OS| = 707). f equi
DSize-l user (|OS| = 132K). g equi PSize-l user (|OS| = 132K)

and PPrelim-l OSs results to very minor (even to zero) qual-
ity loss compared to using the complete respective OSs; e.g.,
by using LASP on either the complete OS or on the cor-
responding DPrelim-l OS, we obtain a DSize-l OS of the
same Im(DSl). More precisely, for the case of the DBLP
author equi PSize-l OSs, we get the maximum score loss by
our algorithms; i.e., 2-LASPe complete and LASP PPrelim-l
algorithms return scores 20 and 15.5, respectively, for l = 50.
In the Google+ user case, respective quality remains the
same for all (combinations of) algorithms (thus, we omit sim
DSize-l and sim PSize-l results). We did not compare with
the optimal results, as the BF-l algorithm is too expensive.

8.3 Efficiency

We compare the run-time performance of our greedy algo-
rithms in Figs. 14, 15 and 16. We used the same OSs as in
Sect. 8.2 (i.e., the same ten OSs per GDS). Figures 14 and 15
show the costs of our algorithms for computingDSize-l (resp.
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Fig. 14 Efficiency on DBLP and Google+. a equi DSize-l author
(|OS| = 707). b sim DSize-l author (|OS| = 707). c equi PSize-l
author (|OS| = 707). d sim PSize-l author (|OS| = 707). e equi
DSize-l user (|OS| = 132K). f sim DSize-l user (|OS| = 132K). g
equi PSize-l user (|OS| = 132K). h sim PSize-l user (|OS| = 132K)

PSize-l) for both types of relevance (equi and sim), exclud-
ing the time required to generate and preprocess OSs (i.e.,
the generation of w(.), ap(.) scores), where each algorithm
operates on. More precisely, Fig. 14 show the costs of our
algorithms for computing size-ls from OSs of the two GDSs
with various sizes and using a range of l values. The average
sizes of theOSs onwhich the algorithmsoperate are indicated
in brackets for each GDS. Figure 15a, b shows the scalability
for author PSize-l of different sizes, after fixing l = 10 (anal-
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Fig. 15 Efficiency (varying OS size). a equi PSize-l author (size-l =
10). b sim PSize-l author (size-l = 10)

ogous results were obtained from User GDSand DSize-l and
thus we omit them). Each value on the x-axis represents an
OS size (and the corresponding PPrelim-10 size). Comparing
these numbers, we can get an indication of preliminary OSs
savings; e.g., the OS with size 1,309 has a PPrelim-10 size
157 (i.e., 11% of the size of the complete OS). From Figs. 14
and 15, we can see that the use of 2-LASPe on a preliminary
OS is the fastest approach. For instance, equi DPrelim-l 2-
LASPe for l = 50 requires only 18.3ms. The results also
verify that the use of sim relevance is more expensive than
the use of equi relevance as it dictates the comparison of each
node against all other OS nodes. For instance, sim DPrelim-l
2-LASPe for l = 50 requires up to 33.9ms (which remains a
practical time).

Finally, Fig. 16a and b break down the cost to OS gener-
ation and preprocessing time (bottom of the bar) and size-l
computation (top of the bar) for each method for PSize-l.
The figures also show (on the x-axis) the average sizes of the
complete OSs and the PPrelim-l OSs for l = 10 and l = 50,
respectively. For instance, the average size of the complete
OS is 707, whereas the average sizes of the corresponding
equi PPrelim-10 and PPrelim-50 OSs are 119 and 272. Evi-
dently, the preliminary OS generation is always faster than
that of the complete OS; for instance, the PPrelim-5 OS’s
size is approximately 10% of the size of the complete OS
and its generation can be done up to 2.5 times faster. Also,
2-LASPe is always faster at both phases (i.e., during OS gen-
eration and preprocessing and during size-l calculation) as at
both phases, more operations are required by LASP (recall
that during preprocessing, the ap(.) of a node in LASP cor-
responds is the path to the root, whereas in 2-LASPe is the
node with its parent only). The comparison of Fig. 16a, b
verifies again that sim relevance is more demanding than
equi relevance. In general as expected, the OS size, l and
sim relevance negatively affect the cost.

The cost of the BF-l algorithm becomes unbearable for
moderate OSs sizes and values of l. For instance, although
using BF-l we could get results for l = 5 (e.g., 16 ms for the
author RDS), we had to terminate the algorithm for l ≥ 10
as it exceeded 30min of running. In summary, the BF-l algo-

(a) (b)

Fig. 16 Efficiency (cost breakdown). a equi PSize-l author (|OS| =
707). b sim PSize-l author (|OS| = 707)

rithm is not practical at all, whereas our greedy algorithms
are very fast, and as we showed in Sect. 8.2, their results
are snippets of high quality. In addition, the use of prelimi-
nary OSs and 2-LASPe is constantly a better choice over the
complete OSs and LASP, respectively, since they are always
faster with a negligible quality loss.

9 Related work

We present and compare related work in relational keyword
search, ranking and summarization. To the best of our knowl-
edge, no previous work has focused on the computation of
diverse and proportional size-l OSs.

9.1 Keyword search and ranking

Relational keyword search facilitates the discovery of joining
tuples (i.e., Minimal Total Join Networks of Tuples (MT-
JNTs) [20]) that collectively contain all query keywords
and are associated through their keys; hence, the con-
cept of candidate networks is introduced (e.g., DISCOVER
[19,20]). Relational keyword search paradigms differ from
OSs semantically, since they search for connections of key-
words. Précis Queries [23,25] resemble size-l OSs as they
append additional information to the nodes containing the
keywords, by considering neighboring relations. However, a
précis query result is a logical subset of the original database
(see [13] for a detailed comparison to size-l OSs). Other
works in this context also investigate indexing and rank-
ing techniques to facilitate efficiency [24]. Recent related
work investigated keyword search on tree structured data,
e.g., [9].

Related ranking paradigms consider Importance, which
weights the authority flow through relationships (e.g., Objec-
tRank [3], ValueRank [14], PageRank [4]). In this work, we
use nodes’ importance to model gi(ni ) and more precisely
global ObjectRank. Our algorithms are orthogonal to how
importance of nodes is defined (alternative methods could
also be investigated).
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9.1.1 Document summarization

Web snippets [21,27] are examples of document summaries
that accompany search results of Web keyword search in
order to facilitate their quick preview. They can be either
static (e.g., the first words of the document or metadata) or
query-biased (e.g., containing the query keywords). How-
ever, the direct application of such techniques on OSs and
databases in general is ineffective as they disregard the rela-
tional associations (e.g., for q = “Faloutsos,” papers authored
by Faloutsos will be disregarded as they do not include the
“Faloutsos” keyword).

9.2 Diversity

Diversification of query results has attracted a lot of attention
recently as a method for improving the quality of results by
balancing similarity (relevance) to a query q and dissimilar-
ity among results. Typically, given a query q and a desired
number of results k, firstly, we get a ranked list of results
S in descending order of their similarity to q, denoted as
sim(si , q); namely, S = 〈s1, ..., sn〉 where n ≥ k. Then, the
objective of diversification is to find a subset of S, R ⊆ S
of size k, such that the elements in R are similar to q (w.r.t
sim(q, si )) and at the same time dissimilar to each other
(w.r.t. dis(si , s j )). The definition of sim and dis scores is
orthogonal to the diversification problem per se, and a vari-
ety of IR-based or probabilistic approaches have been used
to define such functions (e.g., PageRank-based similarity).
In most cases, the same function is used to estimate both
scores (i.e., dis(si , s j ) = 1 − sim(si , s j )). One of the earli-
est and most influential diversification functions is maximal
marginal relevance (MMR) [5], which trades off between
the novelty (a measure of diversity) and relevance of search
results; a parameter is used to control this trade-off. A gen-
eral framework for result diversification appears in [18] with
eight axioms. In [18,28], max-sum, max-min and mono-
objective objective functions and algorithms are proposed.
Our proposed diversity definition is inspired by this mono-
objective approach, where for each document, a single score
trades off the relevance to the query and the dissimilarity
from other documents. In [1,2], probabilistic interpretations
of sim and dis functions and objective functions are pro-
posed. In [10,11], an intuitive definition of diversity, called
DisC diversity, is proposed where the computed diverse sub-
set R covers all elements of S in the sense that for each
element in S there should be a similar element in R, and
at the same time, the elements in R should be dissimilar
to each other (i.e., diverse). In [22], LogRank is proposed,
a principled authority-flow-based algorithm that computes
a representative summary of the user’s activities by select-
ing activities that are simultaneously important, diverse and
time-dispersed.

9.2.1 Proportionality

[7,8,29] investigate proportional diversification. More pre-
cisely, in [8], an election-basedmethod is proposed to address
the problem of diversifying searched results proportionally
(ourwork is inspired by this approach).However, thismethod
disregards the similarity (or importance) of the computed set
R to the query q and thus may result in including irrelevant
objects into R. In [29], this limitation is addressed by con-
sidering relevance in the objective function.

9.2.2 Differences

Our problem has a significant difference from the existing
related works that renders their straightforward application
inappropriate. Related work considers diversity and propor-
tionality of a set of mutually independent results (i.e., S and
R sets). Whereas, we aim at finding a diverse/proportional
l-sized connected subtree of the OS, which is required to
include the root nDS .

10 Conclusion and future work

In this paper, we introduced and investigated the effective-
ness and efficiency of two novel types of size-l OSs, namely
DSize-l OSs and PSize-l OSs. For this purpose, we employed
two types of nodes pairwise relevance, i.e., similarity and
equality. We proposed a brute-force algorithm, two efficient
greedy heuristics and a preprocessing strategy that restricts
processing on only a subset of theOS.We also provide exten-
sive theoretical analysis of these greedy algorithms. Finally,
we conducted a systematic experimental evaluation on the
DBLP and Google+ datasets that verifies the effectiveness,
approximation quality and efficiency of our techniques. The
evaluation verified that the two novel snippets are preferred
by human evaluators over non-diversified size-l OSs [15].
The evaluation also verified preference for results produced
using sim relevance over results produced by using equi
relevance that was proposed in [17].

A direction of future work concerns the investigation
of inter-diversity and inter-proportionality among a set of
query results. For instance, for q, we get three OSs, one per
Faloutsos brother; we can diversify M. Faloutsos DSize-l by
avoiding information included in the C. Faloutsos DSize-l.
Another challenging problem is the combined size-l and top-
k ranking of OSs.
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Appendix

Algorithm 4 OS Generation Algorithm

OS Generation (nDS , GDS)
1: enQueue(Q, nDS) � Queue Q facilitates breadth-first traversal
2: add nDS as the root of the OS
3: while !(isEmptyQueue(Q)) do
4: n j=deQueue(Q)
5: for each child relation Ri of R(n j ) in GDS do
6: get Ri (n j )
7: for each tuple ni of Ri (n j ) do
8: enQueue(Q, ni )
9: add ni on OS as child of n j
10: return OS
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